Synthesis of grafted copolymers of cod collagen and acrylamides in the presence of alkylborane – p-quinone system
- Authors: Kuznetsova Y.L.1, Gushchina K.S.1, Lobanova K.S.1, Rumyantseva V.O.1, Egorikhina M.N.2, Farafontova E.A.2, Rubtsova Y.P.2, Semenycheva L.L.1
-
Affiliations:
- National Research Lobachevsky State University of Nizhny Novgorod
- Privolzhsky Research Medical University
- Issue: Vol 14, No 3 (2024)
- Pages: 305-321
- Section: Chemical Sciences
- URL: https://journals.rcsi.science/2227-2925/article/view/302256
- DOI: https://doi.org/10.21285/achb.938
- EDN: https://elibrary.ru/QJGTNQ
- ID: 302256
Cite item
Full Text
Abstract
Keywords
About the authors
Yu. L. Kuznetsova
National Research Lobachevsky State University of Nizhny Novgorod
Email: kyul@yandex.ru
K. S. Gushchina
National Research Lobachevsky State University of Nizhny Novgorod
Email: ksesha.gushchina@gmail.com
K. S. Lobanova
National Research Lobachevsky State University of Nizhny Novgorod
Email: kariandrs2101@yandex.ru
V. O. Rumyantseva
National Research Lobachevsky State University of Nizhny Novgorod
Email: 11.04.96@mail.ru
M. N. Egorikhina
Privolzhsky Research Medical University
Email: egorihina.marfa@yandex.ru
E. A. Farafontova
Privolzhsky Research Medical University
Email: ekaterina_farafontova@mail.ru
Yu. P. Rubtsova
Privolzhsky Research Medical University
Email: rubincherry@yandex.ru
L. L. Semenycheva
National Research Lobachevsky State University of Nizhny Novgorod
Email: llsem@yandex.ru
References
- Jagtap J.S., Labhade S.D., Chitlange S.S., Mahadevan S. Biopolymer conjugated protein based hydrogel scaffolds for tissue engineering application // International Journal of Pharmacy & Pharmaceutical Research. 2020. Vol. 17, no. 2. P. 284–316.
- Kirillova A., Yeazel T.R., Asheghali D., Petersen S.R., Dort S., Gall K., et al. Fabrication of biomedical scaffolds using biodegradable polymers // Chemical Reviews. 2021. Vol. 121, no. 18. P. 11238–11304. doi: 10.1021/acs.chemrev.0c01200.
- Wang Y., Wang Z., Dong Y. Collagen-based biomaterials for tissue engineering // ACS Biomaterials Science & Engineering. 2023. Vol. 9, no. 3. P. 132–1150. doi: 10.1021/acsbiomaterials.2c00730.
- Dewle A., Pathak N., Rakshasmare P., Srivastava A. Multifarious fabrication approaches of producing aligned collagen scaffolds for tissue engineering applications // ACS Biomaterials Science & Engineering. 2020. Vol. 6, no. 2. P. 779–797. doi: 10.1021/acsbiomaterials.9b01225.
- Sundar G., Joseph J., Prabhakumari C., John A., Abraham A. Natural collagen bioscaffolds for skin tissue engineering strategies in burns: a critical review // International Journal of Polymeric Materials and Polymeric Biomaterials. 2021. Vol. 70, no. 9. P. 593–604. doi: 10.1080/00914037.2020.1740991.
- Subhan F., Hussain Z., Tauseef I., Shehzad A., Wahid F. A review on recent advances and applications of fish collagen // Critical Reviews in Food Science and Nutrition. 2021. Vol. 61, no. 6. P. 1027–1037. doi: 10.1080/10408398.2020.1751585.
- Lin K., Zhang D., Macedo M.H., Cui W., Sarmento B., Shen G. Advanced collagen-based biomaterials for regenerative biomedicine // Advanced Functional Materials. 2019. Vol. 29, no. 3. P. 1804943. doi: 10.1002/adfm.201804943.
- Zheng M., Wang X., Chen Y., Yue O., Bai Z., Cui B., et al. A review of recent progress on collagen-based biomaterials // Advanced Healthcare Materials. 2023. Vol. 12, no. 16. P. 2202042. doi: 10.1002/adhm.202202042.
- Rico-Llanos G.A., Borrego-González S., Moncayo-Donoso M., Becerra J., Visser R. Collagen type I biomaterials as scaffolds for bone tissue engineering // Polymers. 2021. Vol. 13, no. 4. P. 599. doi: 10.3390/polym13040599.
- Vijayalekha A., Anandasadagopan S.K., Pandurangan A.K. An overview of collagen‑based composite scaffold for bone tissue engineering // Applied Biochemistry and Biotechnology. 2023. Vol. 195. P. 4617–4636. doi: 10.1007/s12010-023-04318-y.
- Shekhter A.B., Fayzullin A.L., Vukolova M.N., Rudenko T.G., Osipycheva V.D., Litvitsky P.F. Medical applications of collagen and collagen-based materials // Current Medicinal Chemistry. 2019. Vol. 26, no. 3. P. 506–516. doi: 10.2174/0929867325666171205170339.
- Fassini D., Wilkie I.C., Pozzolini M., Ferrario C., Sugni M., Rocha M.S., et al. Diverse and productive source of biopolymer inspiration: marine collagens // Biomacromolecules. 2021. Vol. 22, no. 5. P. 1815–1834. doi: 10.1021/acs.biomac.1c00013.
- Rahman M.A. Collagen of extracellular matrix from marine invertebrates and its medical applications // Marine Drugs. 2019. Vol. 17, no. 2. P. 118. doi: 10.3390/md17020118.
- Coppola D., Oliviero M., Vitale G.A., Lauritano C., D’Ambra I., Iannace S., et al. Marine collagen from alternative and sustainable sources: extraction, processing and applications // Marine Drugs. 2020. Vol. 18, no. 4. P. 214. doi: 10.3390/md18040214.
- Jafari H., Lista A., Siekapen M.M., Ghaffari-Bohlouli P., Nie L., Alimoradi H., et al. Fish collagen: extraction, characterization, and applications for biomaterials engineering // Polymers. 2020. Vol. 12, no. 10. P. 2230. doi: 10.3390/polym12102230.
- Rajabimashhadi Z., Gallo N., Salvatore L., Lionetto F. Collagen derived from fish industry waste: progresses and challenges // Polymers. 2023. Vol. 15, no. 3. P. 544. doi: 10.3390/polym15030544.
- Salvatore L., Gallo N., Natali M.L., Campa L., Lunetti P., Madaghiele M., et al. Marine collagen and its derivatives: versatile and sustainable bio-resources for healthcare // Materials Science & Engineering C. 2020. Vol. 113. P. 110963. doi: 10.1016/j.msec.2020.110963.
- Hu Y., Liu L., Gu Z., Dan W., Dan N., Yu X. Modification of collagen with a natural derived cross-linker, alginate dialdehyde // Carbohydrate Polymers. 2014. Vol. 102. P. 324–332. doi: 10.1016/j.carbpol.2013.11.050.
- Fathima N.N., Rao J.R., Nair B.U. Effect of UV irradiation on the physico-chemical properties of iron crosslinked collagen // Journal of Photochemistry and Photobiology B: Biology. 2011. Vol. 105, no. 3. P. 203–206. doi: 10.1016/j.jphotobiol.2011.09.003.
- Cao S., Li H., Li K., Lu J., Zhang L. A dense and strong bonding collagen film for carbon/carbon composites // Applied Surface Science. 2015. Vol. 347. P. 307–314. doi: 10.1016/j.apsusc.2015.04.081.
- Zeugolis D.I., Paul G.R., Attenburrow G. Crosslinking of extruded collagen fibers – a biomimetic three-dimensional scaffold for tissue engineering applications // Journal of Biomedical Materials Research Part A. 2009. Vol. 89A, no. 4. P. 895–908. doi: 10.1002/jbm.a.32031.
- Zhou X., Wang J., Fang W., Tao Y., Zhao T., Xia K., et al. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus // Acta Biomaterialia. 2018. Vol. 71. P. 496–509. doi: 10.1016/j.actbio.2018.03.019.
- Goodarzi H., Jadidi K., Pourmotabed S., Sharifi E., Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications // International Journal of Biological Macromolecules. 2019. Vol. 126. P. 620–632. doi: 10.1016/j.ijbiomac.2018.12.125.
- Mu C., Liu F., Cheng Q., Li H., Wu B., Zhang G., et al. Collagen cryogel cross-linked by dialdehyde starch // Macromolecular Materials and Engineering. 2010. Vol. 295, no. 2. P. 100–107. doi: 10.1002/mame.200900292.
- Chen Z.G., Wang P.W., Wei B., Mo X.M., Cui F.Z. Electrospun collagen–chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell // Acta Biomaterialia. 2010. Vol. 6, no. 2. P. 372–382. doi: 10.1016/j.actbio.2009.07.024.
- Kaur S., Jindal R. Synthesis of interpenetrating network hydrogel from (gum copal alcohols-collagen)-co-poly(acrylamide) and acrylic acid: Isotherms and kinetics study for removal of methylene blue dye from aqueous solution // Materials Chemistry and Physics. 2018. Vol. 220. P. 75–86. doi: 10.1016/j.matchemphys.2018.08.008.
- Ding C., Zhang M., Ma M., Zheng J., Yang Q., Feng R. Thermal and pH dual-responsive hydrogels based on semi-interpenetrating network of poly(N-isopropylacryl-amide) and collagen nanofibrils // Polymer International. 2019. Vol. 68, no. 8. P. 1468–1477. doi: 10.1002/pi.5852.
- Luneva O.V., Fateev A.D., Kashurin A.I., Uspenskaya M.V. Study of the properties of semi-interpenetrating networks based on acrylic hydrogel and collagen // Журнал Сибирского федерального университета. Серия: Химия. 2022. Т. 15. N 3. С. 318–328. doi: 10.17516/1998-2836-0295. EDN: DQGEBR.
- Zhang M., Deng F., Tang L., Wu H., Ni Y., Chen L., et al. Super-ductile, injectable, fast self-healing collagen-based hydrogels with multi-responsive and accelerated woundrepair properties // Chemical Engineering Journal. 2021. Vol. 405. P. 126756. doi: 10.1016/j.cej.2020.126756.
- Ullah K., Khan S.A., Murtaza G., Sohail M., Azizullah, Manan A., et al. Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin // International Journal of Pharmaceutics. 2019. Vol. 556. P. 236–245. doi: 10.1016/j.ijpharm.2018.12.020.
- Baek K., Clay N.E., Qin E.C., Sullivan K.M., Kim D.H., Kong H. In situ assembly of the collagen–polyacrylamide interpenetrating network hydrogel: Enabling decoupled control of stiffness and degree of swelling // European Polymer Journal. 2015. Vol. 72. P. 413–422. doi: 10.1016/j.eurpolymj.2015.07.044.
- Khanna N.D., Kaur I., Bhalla T.C., Gautam N. Effect of biodegradation on thermal and crystalline behavior of polypropylene–gelatin based copolymers // Journal of Applied Polymer Science. 2010. Vol. 118, no. 3. P. 1476–1488. doi: 10.1002/app.32434.
- Bas O., De-Juan-Pardo E.M., Chhaya M.P., Wunner F.M., Jeon J.E., Klein T.J., et al. Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs // European Polymer Journal. 2015. Vol. 72. P. 451–463. doi: 10.1016/j.eurpolymj.2015.07.034.
- Fujisawa S., Kadoma Y. Tri-n-butylborane/watercomplex-mediated copolymerization of methyl methacrylate with proteinaceous materials and proteins: a review // Polymers. 2010. Vol. 2, no. 4. P. 575–595. doi: 10.3390/polym2040575.
- Okamura H., Sudo A., Endo T. Generation of radical species on polypropylene by alkylborane-oxygen system and its application to graft polymerization // Journal of Polymer Science: Part A: Polymer Chemistry. 2009. Vol. 47, no. 22. P. 6163–6167. doi: 10.1002/pola.23659.
- Liu S., Zheng Z., Li M., Wang X. Effect of oxidation progress of tributylborane on the grafting of polyolefins // Journal of Applied Polymer Science. 2012. Vol. 125, no. 5. P. 3335–3344. doi: 10.1002/app.34232.
- Komabayashi T., Zhu Q., Eberhart R., Imai Y. Current status of direct pulp-capping materials for permanent teeth // Dental Materials Journal. 2016. Vol. 35, no. 1. P. 1–12. doi: 10.4012/dmj.2015-013.
- Sonnenschein M.F., Redwine O.D., Wendt B.L., Kastl P.E. Colloidal encapsulation of hydrolytically and oxidatively unstable organoborane catalysts and their use in waterborne acrylic polymerization // Langmuir. 2009. Vol. 25, no. 21. P. 12488–12494. doi: 10.1021/la9017079.
- Dodonov V.A., Starostina T.I. Radical bonding thermoplastics and materials with low surface energy using acrylate compositions // Polymer Science, Series D. 2018. Vol. 11. P. 60–66. doi: 10.1134/S1995421218010069.
- Wilson O.R., Borrelli D.J., Magenau A.J.D. Simple and rapid adhesion of commodity polymer substrates under ambient conditions using complexed alkylboranes. ACS Omega. 2022. Vol. 7, no. 32. P. 28636–28645. doi: 10.1021/acsomega.2c03740.
- Kuznetsova Yu.L., Morozova E.A., Sustaeva K.S., Markin A.V., Mitin A.V., Baten’kin M.A., et al. Tributylborane in the synthesis of graft copolymers of collagen and polymethyl methacrylate // Russian Chemical Bulletin. 2022. Vol. 71. P. 389–398. doi: 10.1007/s11172-022-3424-3.
- Kuznetsova Yu.L., Sustaeva K.S., Mitin A.V., Zakharychev E.A., Egorikhina M.N., Chasova V.O., et al. Graft polymerization of acrylamide in an aqueous dispersion of collagen in the presence of tributylborane // Polymers. 2022. Vol. 14, no. 22. P. 4900. doi: 10.3390/polym14224900.
- Uromicheva M.A., Kuznetsova Y.L., Valetova N.B., Mitin A.V., Semenycheva L.L., Smirnova O.N. Synthesis of grafted polybutyl acrylate copolymer on fish collagen // Известия вузов. Прикладная химия и биотехнология. 2021. Т. 11. N 1. С. 16–25. doi: 10.21285/2227-2925-2021-11-1-16-25. EDN: IJBJHH.
- Semenycheva L., Chasova V.O., Pegeev N.L., Uromicheva M.A., Mitin A.V., Kuznetsova Yu.L., et al. Production of graft copolymers of cod collagen with butyl acrylate and vinyl butyl ether in the presence of triethylborane – prospects for use in regenerative medicine // Polymers. 2023. Vol. 15, no. 15. P. 3159. doi: 10.3390/polym15153159.
- Kuznetsova Yu.L., Gushchina K.S., Lobanova K.S., Chasova V.O., Egorikhina M.N., Grigoryeva A.O., et al. Scaffold chemical model based on collagen–methyl methacrylate graft copolymers // Polymers. 2023. Vol. 15, no. 12. P. 2618. doi: 10.3390/polym15122618.
- Kuznetsova Yu., Gushchina K., Sustaeva K., Mitin A., Egorikhina M., Chasova V., et al. Grafting of methyl methacrylate onto gelatin initiated by tri-butylborane–2,5-di-tert-butyl-p-benzoquinone system // Polymers. 2022. Vol. 14, no. 16. P. 3290. doi: 10.3390/polym14163290.
- Kuznetsova Yu.L., Morozova E.A., Vavilova A.S., Markin A.V., Smirnova O.N., Zakharycheva N.S., et al. Synthesis of biodegradable grafted copolymers of gelatin and polymethyl methacrylate // Polymer Science, Series D. 2020. Vol. 13. P. 453–459. doi: 10.1134/S1995421220040115.
- Kuznetsova Yu.L., Sustaeva K.S., Vavilova A.S., Markin A.V., Lyakaev D.V., Mitin A.V., et al. Tributylborane in the synthesis of graft-copolymers of gelatin and acrylamide // Journal of Organometallic Chemistry. 2020. Vol. 924. P. 121431. doi: 10.1016/j.jorganchem.2020.121431.
- Пат. № 2567171, Российская Федерация, МПК C08H 1/06, A23J 1/04. Способ получения уксусной дисперсии высокомолекулярного рыбного коллагена / Л.Л. Семенычева, М.В. Астанина, Ю.Л. Кузнецова, Н.Б. Валетова, Е.В. Гераськина, О.А. Таранкова. Заявл. 06.10.2014; опубл. 10.11.2015. Бюл. № 31.
- Simándi T.L., Tüdös F. Kinetics of radical polymerization–XLV. Steric effects in the radical reactivity of quinones // European Polymer Journal. 1985. Vol. 21, no. 10. P. 865–869. doi: 10.1016/0014-3057(85)90165-X.
- Nistor M.-T., Pamfil D., Schick C., Vasile C. Study of the heat-induced denaturation and water state of hybrid hydrogels based on collagen and poly (N-isopropyl acrylamide) in hydrated conditions // Thermochimica Acta. 2014. Vol. 589. P. 114–122. doi: 10.1016/j.tca.2014.05.020.
- Kalinina E.A., Vavilova A.S., Sustaeva K.S., Kuznetsova Yu.L. Polymerization of alkyl (meth)acrylates in the presence of p-quinones // Russian Chemical Bulletin. 2021. Vol. 70. P. 1775–1783. doi: 10.1007/s11172-021-3282-4.
- Dodonov V.A., Kuznetsova Yu.L., Vilkova A.I., Skuchilina A.S., Nevodchikov V.I., Beloded L.N. Uncontrolled pseudoliving free-radical polymerization of methyl methacrylate in the presence of butyl-p-benzoquinones // Russian Chemical Bulletin. 2007. Vol. 56. P. 1162–1165. doi: 10.1007/s11172-007-0176-z.
- Semenycheva L.L., Egorikhina M.N., Chasova V.O., Valetova N.B., Podguzkova M.V., Astanina M.V., et al. Enzymatic hydrolysis of collagen by pancreatin and thrombin as a step in the formation of scaffolds // Russian Chemical Bulletin. 2020. Vol. 69. P. 164–168. doi: 10.1007/s11172-020-2738-2.
- Bender M.L., Bergeron R.J., Komiyama M. The bioorganic chemistry of enzymatic catalysis. New York. Wiley-Interscience, 1984. 312 p.
Supplementary files
