Effect of tebuconazole and azoxystrobin on the physiological parameters of wheat seedlings and their resistance to water stress

Cover Page

Cite item

Full Text

Abstract

Strobilurin and triazole class fungicides are actively used in agriculture as part of dressers to protect plants from fungal disease. In addition, they have various physiological effects on plants, including increased resistance to adverse environmental factors. The combined effect of these fungicides under water stress is understudied. The present work aims to examine the individual and combined effects of tebuconazole and azoxystrobin on the growth characteristics of wheat and its resistance to water stress. The study used winter wheat (Triticum aestivum L. ) plants grown from seeds treated with tebuconazole (2 mg/50 g seeds) and azoxystrobin (4 mg/50 g seeds) suspensions separately or together. In order to create water stress, five-day seedlings were transferred to 20% polyethylene glycol solution (PEG 6000), with stability assessed at seven and nine days. Tebuconazole was found to have a retardant effect on shoots and stimulate root growth. Azoxystrobin inhibited shoot growth and particularly root growth. When used together, tebuconazole partially reduced azoxystrobin-induced root inhibition. Azoxystrobin increased the negative effect of water stress, while tebuconazole effectively protected the root system of seedlings, partially reducing the effect of azoxystrobin. The stimulation of root growth with tebuconazolewas concluded to play an important role in providing resistance of winter wheat to water stress and to have the potential for use in agriculture.

About the authors

T. P. Pobezhimova

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: pobezhimova@sifibr.irk.ru

E. V. Berezhnaya

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: ekaterina809@mail.ru

E. A. Polyakova

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: polyackova.elizaveta727@mail.ru

A. V. Korsukova

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: avkorsukova@gmail.com

N. S. Zabanova

Siberian Institute of Plant Physiology and Biochemistry SB RAS; Irkutsk State University

Email: pavnatser@mail.ru

I. V. Lyubushkina

Siberian Institute of Plant Physiology and Biochemistry SB RAS; Irkutsk State University

Email: ostrov1873@yandex.ru

A. V. Stepanov

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: saw33@list.ru

N.  V. Dorofeev

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: nicdoro@gmail.ru

O.  I. Grabelnych

Siberian Institute of Plant Physiology and Biochemistry SB RAS; Irkutsk State University

Email: grolga@sifibr.irk.ru

References

  1. Hof H. Critical annotations to the use of azole antifungals for plant protection // Antimicrobial Agents and Chemotherapy. 2001. Vol. 45, no. 11. P. 2987–2990. doi: 10.1128/AAC.45.11.2987-2990.2001.
  2. Davis T.D., Steffens G.L., Sankhla N. Triazole plant growth regulators // Horticultural Reviews. 1988. Vol. 10. P. 63–105. doi: 10.1002/9781118060834.ch3.
  3. Побежимова Т.П., Корсукова А.В., Дорофеев Н.В., Грабельных О.И. Физиологические эффекты действия на растения фунгицидов триазольной природы // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 3. С. 461–476. doi: 10.21285/2227-2925-2019-9-3461-476. EDN: VLYINU.
  4. Щербаков П.А. Ламадор: отличный старт и успешный финиш сельскохозяйственного сезона // Защита и карантин растений. 2010. N 3. С. 76–77. EDN: KZXZDX.
  5. Грабельных О.И., Полякова Е.А., Корсукова А.В., Забанова Н.С., Бережная Е.В., Любушкина И.В.. Разнонаправленные эффекты тебуконазол-содержащего протравителя семян «Бункер» на рост побегов и корней озимой пшеницы // Известия Иркутского государственного университета. Серия: Биология. Экология. 2020. Т. 34. С. 3–19. doi: 10.26516/2073-3372.2020.34.3. EDN: PPGIZZ.
  6. Gilley A., Fletcher R.A. Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings // Journal of Plant Growth Regulation. 1997. Vol. 21. P. 169–175. doi: 10.1023/A:1005804717016.
  7. Rabert G.A., Rajasekar M., Manivannan P. Triazoleinduced drought stress amelioration on growth, yield, and pigments composition of Helianthus annuus L. (sunflower) // International Multidisciplinary Research Journal. 2015. Vol. 5. P. 6–15.
  8. Namjoyan S., Rajabi A., Sorooshzadeh A., AghaAlikhani M. The potential of tebuconazole for mitigating oxidative stress caused by limited irrigation and improving sugar yield and root quality traits in sugar beet // Plant Physiology and Biochemistry. 2021. Vol. 162. P. 547– 555. doi: 10.1016/j.plaphy.2021.03.027.
  9. Bartlett D.W., Clough J.M., Godwin J.R., Hall A.A., Hamer M., Parr-Dobrzanski B. The strobilurin fungicides // Pest Management Science. 2002. Vol. 58, no. 7. P. 649–662. doi: 10.1002/ps.520.
  10. Giuliani M.M., Carucci F., Nardella E., Francavilla M., Ricciardi L., Lotti C., Gatta G. Combined effects of deficit irrigation and strobilurin application on gas exchange, yield and water use efficiency in tomato (Solanum lycopersicum L.) // Scientia Horticulturae. 2018. Vol. 233. P. 149–158. doi: 10.1016/j.scienta.2018.01.052.
  11. Zhang Y.-J., Zhang X., Chen C.-J., Zhou M.-G., Wang H.-C. Effects of fungicides JS399-19, azoxystrobin, tebuconazole and carbendazim on the physiological and biochemical indices and grain yield of winter wheat // Pesticide Biochemistry and Physiology. 2010. Vol. 98, no. 2. P. 151–157. doi: 10.1016/j.pestbp.2010.04.007.
  12. Liang S., Xu X., Lu Z. Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves // Journal of Ginseng Research. 2018. Vol. 42, no. 2. P. 175–182. doi: 10.1016/j.jgr.2017.02.004.
  13. Бережная Е.В., Корсукова А.В., Федотова О.А., Дорофеев Н.В., Грабельных О.И. Особенности ростингибирующего эффекта фунгицида азоксистробина и его способность тормозить расход сахаров в проростках озимой пшеницы // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 4. С. 657–665. doi: 10.21285/2227-2925-2020-10-4-657665. EDN: VUVSXM.
  14. Ali A.A.I., Desoky E.S.M., Rady M.M. Application of azoxystrobin fungicide improves drought tolerance in tomato, via enhancing physio-biochemical and anatomical feature // International Letters of Natural Sciences. 2019. Vol. 76. P. 34–49. doi: 10.56431/p-hg2stm.
  15. Barányiová I., Klem K. Effect of application of growth regulators on the physiological and yield parameters of winter wheat under water deficit // Plant, Soil and Environment. 2016. Vol. 62, no. 3. P. 114–120. doi: 10.17221/778/2015-PSE.
  16. Filippou P., Antoniou C., Obata T., Van Der Kelen K., Harokopos V., Kanetis L., et al. Kresoxim-methyl primes Medicago trucatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment // Journal of Experimental Botany. 2016. Vol. 67, no. 5. P. 1259–1274. doi: 10.1093/jxb/erv516.
  17. Chiu Y.-C., Chen B.-J., Su Y.-S., Huang W.-D., Chen C.-C. A leaf disc assay for evaluating the response of tea (Camellia sinensis) to PEG-induced osmotic stress and protective effects of azoxystrobin against drought // Plants. 2021. Vol. 10, no. 3. P. 546. doi: 10.3390/plants10030546.
  18. Nason M.A., Farrar J., Bartlett D. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress // Pest Management Science. 2007. Vol. 63, no. 12. P. 1191–1200. doi: 10.1002/ps.1443.
  19. Байбакова Е.В., Нефедьева Е.Э. Изменения интенсивности дыхания проростков пшеницы под действием азоксистробина и регулятора роста // Вестник науки и образования. 2017. Т. 2. N 12. С. 29–32. EDN: ZXIXEL.
  20. Санеева Е.А., Зорькина О.В., Нефедьева Е.Э. Исследование фитотоксического действия тебуконазола, протиоконазола, флудиоксонила и препаратов на их основе на энергию прорастания и рост проростков пшеницы и горчицы белой // Siberian Journal of Life Sciences and Agriculture. 2022. Т. 14. N. 5. С. 166–186. doi: 10.12731/2658-66492022-14-5-166-186. EDN: DNFEMT.
  21. Mohsin S.M., Hasanuzzaman M., Bhuyan M.H.M.B., Parvin K., Fujita M. Exogenous tebuconazole and trifloxystrobin regulates reactive oxygen species metabolism toward mitigating salt-induced damages in cucumber seedling // Plants. 2019. Vol. 8, no. 10. P. 428. doi: 10.3390/plants8100428.
  22. Mohsin S.M., Hasanuzzaman M., Nahar K., Hossain Md.S., Bhuyan M.H.M.B., Parvin K., Fujita M. Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L. // Physiology and Molecular Biology of Plants. 2020. Vol. 26. P. 1139–1154. doi: 10.1007/s12298-020-00810-5.
  23. Mohsin S.M., Hasanuzzaman M., Parvin K., Hossain Md.S., Fujita M. Protective role of tebuconazole and trifloxystrobin in wheat (Triticum aestivum L.) under cadmium stress via enhancement of antioxidant defense and glyoxalase systems // Physiology and Molecular Biology of Plants. 2021. Vol. 27, no. 5. P. 1043–1057. doi: 10.1007/s12298-021-00983-7.
  24. Bayoumi T.Y., Eid M.H., Metwali E.M. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes // African Journal of Biotechnology. 2008. Vol. 7, no. 14. P. 2341–2352.
  25. Lazukin A., Pinchuk M., Korsukova A., Nikiforov A., Romanov G., Stepanova O., Grabelnych O. Comparison of presowing wheat treatments by low-temperature plasma, electric field, cold hardening, and action of tebuconazolebased disinfectant // Applied Sciences. 2022. Vol. 12, no. 13. P. 6447. doi: 10.3390/app12136447.
  26. Побежимова Т.П., Корсукова А.В., Боровик О.А., Забанова Н.С., Дорофеев Н.В., Грабельных О.И.. Влияние тебуконазола и тебуконазол-содержащего препарата «Бункер» на функционирование митохондрий озимой пшеницы // Биологические мембраны. 2020. Т. 37. N 3. C. 224–234. doi: 10.31857/S0233475520020103. EDN: JAQLEF.
  27. Зубко Н.Г., Долженко Т.В. Действие фунгицидов на содержание фотосинтетических пигментов в растениях пшеницы яровой // Аграрная наука. 2022. N 12. С. 110–118. doi: 10.32634/0869-8155-2022-365-12110-118. EDN: VHQCBI.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».