Cell culture of Scorzonera hispanica L., strain SFR-SH1. Major secondary metabolites
- Authors: Semenov A.A.1, Enikeev A.G.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
- Issue: Vol 13, No 3 (2023)
- Pages: 409-415
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/301364
- DOI: https://doi.org/10.21285/2227-2925-2023-13-3-409-415
- EDN: https://elibrary.ru/DAARPC
- ID: 301364
Cite item
Full Text
Abstract
Plant cell cultures are widely used in the world pharmaceutical industry as a raw material for the production of biologically active compounds. Their certain advantages, such as independence from seasonal conditions, diseases and their transmitter, contribute to the development of this area of biotechnology. In addition, it is possible to obtain the required quantity of the desired product with standard quality characteristics. Since the biosynthesis of new compounds does not occur in the intact plant, another advantage of this method arises. It consists in obtaining new substances due to the peculiarities of cell culture biology. The conducted review represents secondary metabolites isolated from the cell culture of Scorzonera hispanica L., strain SFR-SH1, possessing biological activity. In addition, the history of developing the selected strain and schemes for isolation and purification of secondary metabolites are demonstrated. For a clearer discussion, the main secondary metabolites found in cells are broadly divided into three groups. The first group includes compounds typical of most plants: β-sitosterol and its glucoside, caffeic acid methyl ester and oleanic acid. The second group contains syringaresinol monoglucoside, which is relatively rare in plant objects. The third group includes two compounds isolated from natural objects for the first time: sesquiterpene glucoside, scorzoside and neolignan scorzonoside. The results obtained were compared with the available literature data on the chemical composition of native plants of S. hispanica and other Scorzonera genera species. Due to its high biological activity, Syringaresinol monoglycoside attracts more attention than other compounds detected in cultured cells. Long-term cultivation of Monoglycoside leads to an alteration in the physicochemical characteristics of this compound for an unknown reason.
About the authors
A. A. Semenov
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: laps1936@mail.ru
A. G. Enikeev
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: enikeev@sifibr.irk.ru
References
- Shakya A.K. Medicinal plants: future source of new drugs // International Journal of Herbal Medicine. 2016. Vol. 4, no. 4. P. 59−64. https://doi.org/10.13140/RG.2.1.1395.6085.
- Seca A.M.L., Pinto D.C.G.A. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application // International Journal Molecular Science. 2018. Vol. 19, no. 1. P. 263. https://doi.org/10.3390/ijms19010263.
- Majolo F., Delwing L.K.O.B., Marmitt D.J., Bustamante-Fiho I.C., Goettert M. Medicinal plants and bioactive natural compounds for cancer treatment: important advances for drug discovery // Phytochemistry Letters. 2019. Vol. 31. P. 196−207. https://doi:org/10.1016/j.phytol.2019.04.003.
- Dias M.I., Sousa J.S., Alves R.C., Ferreira C.F.R. Exploring plant tissue culture to improve the production of phenolic compounds: a review // Industrial Crops and Products. 2016. Vol. 82. P. 9−22. https://doi.org/10.1016/j.indcrop.2015.12.016.
- Efferth T. Biotechnology applications of plant callus cultures // Engineering. 2019. Vol. 5, no. 1. P. 50−59. https://doi.org/10.1016/j.eng.2018.11.006.
- Bhojwani S.S., Razdan M.K. Plant tissue culture: theory and practice, a revised edition. Amsterdam: Elsevier, 1996. 767 p.
- Сампиев А.М., Хочава М.Р., Онбыш Т.Е., Шевченко А.И., Быкова О.А., Хазиева Ф.М. Современное состояние и перспективы дальнейшего исследования скорцонеры испанской (обзор) // Вопросы биологической, медицинской и фармацевтической химии. 2020. Т. 23. N 1. С. 3−8. EDN: SWKBKW. https://doi.org/10/29296/25877313-2020-01-01.
- Пат. N 2059718, Российская Федерация, C12N 5/00, A01H 4/00. Штамм Scorconera hispanica ВСККВР№35 – источник растительной биомассы, обладающей биологической активностью / К.З. Гамбург, Л.М. Ошарова, Е.Ф. Высоцкая, А.Г. Еникеев; заявитель и патентообладатель АО «Промет». Заявл. 05.06.1992; опубл. 05.10.1996.
- Громова А.С., Тукало Е.А., Ганенко Т.В., Луцкий В.И., Витковский В.Ю. Гликозид (5)-ситостерина из Aconitum czekanovskyi Steinb., Thalictrum foetidum L., Th. squarrosum Stefti., Th. Minus // Известия Сибирского отделения Академии наук СССР. Серия химических наук. 1986. N 3. С. 83−85.
- Сырчина А.И., Семенов А.А., Тюкавкина Н.А., Витковский В.Ю., Воронков М.Г. Метиловые эфиры фенолокислот из Equisetum arvense // Химия природных соединений. 1981. N 5. С. 658.
- Ogunkoy L. Application of mass spectrometry in structural problems in triterpenes // Phytochemistry. 1981. Vol. 20, no. 1. P. 121−126. https://doi.org/10.1016/0031-9422(81)85230-2.
- Брянский О.В., Толстихина В.В., Семенов А.А. Сесквитерпеновый глюкозид из культивируемых клеток Scorzonera hispanica // Химия природных соединений. 1992. N 6. С. 640−645.
- Yang Y.-J., Yao J., Jin X.-J., Shi Z.-N., Shen T.-F., Fang J.-G., et al. Sesquiterpenoids and tirucallane triterpenoids from roots of Scorzonera divaricate // Phytochemistry. 2016. Vol. 124. P. 86−98. https://doi.org/10.1016/j.phytochem.2016.01.015.
- Брянский О.В., Толстихина В.В., Семенов А.А. Глюкозид сирингорезинола из культуры клеток Scorzonera hispanica // Химия природных соединений. 1992. N 5. С. 591−592.
- Semenov А.А., Enikeev A.G., Khobrakova V.B., Razuvayeva Y.G., Nikolayev S.М. Study on the healing effect of syringaresinol β-D-monoglucoside // International Journal of Biomedicine. 2013. Vol. 3, no. 4. P. 287−290. EDN: RPWEZV.
- Agrawal P.K., Rastogi R.O., Osterdahl B.G. 13C NMR spectral analysis of dihydrobenzofuran lignans // Organic Magnetic Resonance. 1983. Vol. 21, no. 2. P. 119−121. https://doi.org/10.1002/omr.1270210208.
- Agrawal P.K., Thakur R.S. 13C NMR spectroscopy of lignans and neolignans // Magnetic Resonance in Chemistry. 1985. Vol. 23, no. 6. P. 389−418. http://doi.org/10.1992/mrc.1260230602.
- Salama O., Chandhuri R.K., Sticher O.A. A lignan glucoside from Euphrasia rostkoviana // Phytochemistry. 1981. Vol. 20, no. 11. P. 2603−2604. https://doi.org/10.1016/0031-9422(81)83110-X.
- Толстихина В.В., Семенов А.А. Mинорные метаболиты культуры клеток Scorzonera hispanica // Растительные ресурсы. 1998. Т. 34. N 2. С. 77−80.
- Толстихина В.В., Семенов А.А. Минорные лигнаны из культивируемых клеток Scorzonera hispanica // Растительные ресурсы. 1999. Т. 35. N 1. C. 87−89.
- Lundgren L.N., Popoff T., Theander O. Dilignol glycosides from needles of Picea abies // Phytochemistry. 1981. Vol. 20, no. 8. P. 1967−1969. https://doi.org/10.1016/0031-9422(81)84046-0.
- Oshima Y., Takuta S., Hikino H., Deyama T., Rinoshita G. Antiсomplementary activity of the constituents of Eucommia ulmoides bark // Journal of Ethnopharmacology. 1988. Vol. 23, no. 2-3. P. 159−164. https://doi.org/10.1016/0378-8741(88)90003-7.
- Оводов Ю.С., Фролова Г.М., Нефедова М.Ю., Еляков Г.Б. Гликозиды Eleutherococcus senticosus. II. Строение элеутерозидов А, B, C, D // Химия природных соединений. 1967. N 1. С. 63−64.
- Pelter A., Ward R.S., Watson D.J., Jack I.R. Synthesis and N.M.R. spectra of 2,6and 2,4-diaryl-3,7-dioxabicyclo-(3.3.0) octanes // Journal of the Chemical Society. Perkin Transaction 1. 1982. Vol. 1. P. 183−190. https://doi.org/10.1039/P19820000183.
- Priyashree S., Jha S., Pattanayak S.P. A review on Cressa cretica Linn.: a halophytic plant // Pharmacognosy Review. 2010. Vol. 4, no. 8. P. 161−166. https://doi.org/10.4103/0973-7847.70910.
- Lami N., Kadota Sh., Kikuchi T., Momose Y. Constituents of the roots of Boerhaavia diffusa L. III. Identification of Ca2+ channel antagonistic compound from the methanol extract // Chemical Pharmaceutical Bulletin. 1991. Vol. 39, no. 6. P. 1551−1555. https://doi.org/10.1248/cpb.39.1551.
- Nakamura S., Zhang Y., Matsuda H., Ninomiya K., Muraoka O., Yoshikawa M. Chemical structure and hepatoprotective effects of constituents from leaves of Salacia chinensis // Chemical Pharmaceutical Bulletin. 2011. Vol. 59, no. 8. P. 1020−1028. https://doi.org/10.1248/cpb.59.1020.
- Головкин Б.Н., Руденская Р.Н., Трофимова И.А., Шретер А.И. Биологически активные вещества растительного происхождения: монография. М.: Наука, 2001. 764 с.
- Маршалкин М.Ф., Оробинская В.Н. Пищевые волокна скорцонера и овсяного корня и их лечебно-профилактическое использование // Успехи современного естествознания. 2002. N 2. С. 77–84. EDN: TFYDQH.
- Сампиев А.М., Шевченко А.И., Хочава М.Р., Никифорова Е.Б., Быкова О.А. Исследование флавоноидов, фенолкарбоновых и органических кислот скорцонеры испанской (Scorzonera hispanica L.) // Вопросы биологической, медицинской и фармацевтической химии. 2018. Т. 21. N 1. C. 25−29. https://doi.org/10.29296/25877313-2018-01-05. EDN: YPUTYY.
- Granica S., Lohwasser U., Jöhrer K., Zidorn C. Qualitative and quantitative analyses of secondary metabolites in aerial and subaerial of Scorzonera hispanica L. (black salsify) // Food Chemistry. 2015. Vol. 173. P. 321−331. https://doi.org/10.1016/j.foodchem.2014.10.006.
- Носов А.М. Функции вторичных метаболитов растений in vivo и in vitro // Физиология растений. 1994. Т. 41. N 6. С. 873−878.
Supplementary files


