Study of products derived from the microwave-assisted thermal degradation of high-moor peat

Cover Page

Cite item

Full Text

Abstract

   Peat reserves are of great interest for various industries (energy, fuel, chemical, etc.). It is common practice to use pyrolysis to process such solid carbon-containing resources with the subsequent yield of fuel and valuable products. One of the environmentally and energetically favorable ways to degrade carbon-containing feedstock that is currently under development is microwave-assisted pyrolysis. Microwave radiation provides volumetric heating of the material, which significantly increases heating uniformity across the volume of the irradiated sample, providing greater efficiency of heat transfer and avoiding local overheating on the reactor surface. In the conducted study, a system was designed for the microwave processing of organic materials. The structural elements of the system are described, and a schematic showing pyrolysis product separation is presented. A prototype of the developed reactor was used to conduct experiments on degrading high-moor sphagnum peat of the Greko-Ushakovskoe deposit under mild pyrolysis conditions induced by microwave radiation. The component composition of reaction products was analyzed via chromatography-mass spectrometry and compared with the results of previous experiments using conventional thermal pyrolysis. More advanced processing of peat is performed under the conditions of microwave-assisted mild pyrolysis with a high yield of valuable products due to a more efficient heat transfer, uniform heating of the material, and the optimal reaction rate. The developed technology is shown to produce raw materials for a wide range of high-tech industrial productions. The prospects for the industrial use of the proposed microwave-assisted peat processing technology are discussed, specifically for the production of efficient hydrophobic sorbent.

About the authors

T. O. Krapivnitckaia

Institute of Applied Physics, Russian Academy of Sciences; Ufa State Petroleum Technical University

Email: kto@ipfran.ru

S. A. Ananicheva

Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky State University of Nizhniy Novgorod

Email: bulanova@ipfran.ru

A. B. Alyeva

Institute of Applied Physics, Russian Academy of Sciences

Email: a.alyeva@ipfran.ru

A. А. Vikharev

Institute of Applied Physics, Russian Academy of Sciences

Email: alvikharev@ipfran.ru

N. Yu. Peskov

Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky State University of Nizhniy Novgorod

Email: peskov@ipfran.ru

A. N. Denisenko

Institute of Applied Physics, Russian Academy of Sciences

Email: androu@ipfran.ru

M. Yu. Glyavin

Institute of Applied Physics, Russian Academy of Sciences

Email: glyavin@ipfran.ru

S. V. Zelentsov

Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky State University of Nizhniy Novgorod

Email: zelentsov@chem.unn.ru

N. S. Shulaev

Institute of Chemical Technologies and Engineering of Ufa State Petroleum Technical University (Sterlitamak Branch)

Email: nshulaev@rambler.ru

References

  1. Hakizimana J.D.K., Kim H.-T. Peat briquette as an alternative to cooking fuel: a techno-economic viability assessment in Rwanda // Energy. 2016. Vol. 102. P. 453–464. doi: 10.1016/j.energy.2016.02.073.
  2. Arpia A.A., Chen W.-H., Lam S.S., Rousset P., de Luna M.D.G. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating : a comprehensive review // Chemical Engineering Journal. 2021. Vol. 403. P. 126233. doi: 10.1016/j.cej.2020.126233.
  3. Mushtaq F., Mat R., Ani F.N. A review on microwave assisted pyrolysis of coal and biomass for fuel production // Renewable and Sustainable Energy Reviews. 2014. Vol. 39. P. 555–574. doi: 10.1016/j.rser.2014.07.073.
  4. Demirbas A., Arin G. An overview of biomass pyrolysis // Energy Sources. 2002. Vol. 24, no. 5. P. 471–482. doi: 10.1080/00908310252889979.
  5. Бердоносов С.С. Микроволновая химия // Соросовский образовательный журнал. 2001. Т. 7. N 1. C. 32–38.
  6. Кузнецов Д.В., Раев В.А., Куранов Г.Л., Арапов О.В., Костиков Р.Р. Применение микроволнового излучения в синтезе органических соединений // Журнал общей химии. 2005. Т. 41. N 12. С. 1757–1787. EDN: OYQPTV.
  7. Mgbemena C.O., Li D., Lin M.-F., Liddel P.D., Katnam K.B., Thakur V.K., et al. Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications : a review of scientific challenges // Composites Part A: Applied Science and Manufacturing. 2018. Vol. 115. P. 88–103. doi: 10.1016/j.compositesa.2018.09.012.
  8. Морозов О.Г., Самигуллин Р.Р., Насыбуллин А. Р. Микроволновые технологии в процессах переработки и утилизации бытовых полимерных отходов // Известия Самарского научного центра Российской академии наук. 2010. Т. 12. N 4-3. С. 580–582. EDN: NXJUTZ.
  9. Foong S.Y., Liew R.K., Yang Y., Cheng Y.W., Yek P.N.Y., Wan Mahari W.A., et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions // Chemical Engineering Journal. 2020. Vol. 389. P. 124401. doi: 10.1016/j.cej.2020.124401.
  10. Patel A., Agrawal B., Rawal B.R. Pyrolysis of biomass for efficient extraction of biofuel // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020. Vol. 42, no. 13. P. 1649–1661. doi: 10.1080/15567036.2019.1604875.
  11. Fernandez A., Palacios C., Echegaray M., Mazza G., Rodriguez R. Pyrolysis and combustion of regional agro-industrial wastes: thermal behavior and kinetic parameters comparison // Combustion Science and Technology. 2018. Vol. 190, no. 1. P. 114–135. doi: 10.1080/00102202.2017.1377701.
  12. Dupont C., Chiriac R., Gauthier G., Toche F. Heat capacity measurements of various biomass types and pyrolysis residues // Fuel. 2014. Vol. 115. P. 644–651. doi: 10.1016/j.fuel.2013.07.086.
  13. Karimi M., Aminzadehsarikhanbeglou E., Vaferi B. Robust intelligent topology for estimation of heat capacity of biochar pyrolysis residues // Measurement. 2021. Vol. 183. P. 109857. doi: 10.1016/j.measurement.2021.109857.
  14. Li F., Feng J., Zhang H., Li W.-Y. Particle-scale heat and mass transfer processes during the pyrolysis of millimeter-sized lignite particles with solid heat carriers // Applied Thermal Engineering. 2023. Vol. 219. P. 119372. doi: 10.1016/j.applthermaleng.2022.119372.
  15. Sharifzadeh M., Sadeqzadeh M., Guo M., Borhani T.N., Murthy Konda N.V.S.N., Garcia M.C., et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions // Progress in Energy and Combustion Science. 2019. Vol. 71. P. 1–80. doi: 10.1016/j.pecs.2018.10.006.
  16. Papari S., Hawboldt K. A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models // Renewable and Sustainable Energy Reviews. 2015. Vol. 52. P. 1580–1595. doi: 10.1016/j.rser.2015.07.191.
  17. Kan T., Strezov V., Evans T.J. Lignocellulosic biomass pyrolysis : a review of product properties and effects of pyrolysis parameters // Renewable and Sustainable Energy Reviews. 2016. Vol. 57. P. 1126–1140. doi: 10.1016/j.rser.2015.12.185.
  18. Пат. № 2737007, Российская Федерация, H05B 6/64. Комплекс для микроволнового пиролиза органических материалов / Н.Ю. Песков, Т.О. Крапивницкая, Д.И. Соболев, М.Ю. Глявин, А.Н. Денисенко. Заявл. 29. 06. 2020; опубл. 24. 11. 2020. Бюл. № 33.
  19. Исламова С.И., Тимофеева С.С., Хаматгалимов А.Р., Ермолаев Д.В. Кинетический анализ термического разложения низинного и верхового торфа // Химия твердого топлива. 2020. № 3. С. 32–41. doi: 10.31857/S0023117720030044. EDN: UASEBA.
  20. Крапивницкая Т.О., Ананичева С.А., Алыева А.Б., Вихарев А.А., Глявин М.Ю., Денисенко А.Н.. Сравнительные эксперименты по микроволновой и термической деструкции торфа в лабораторных установках с малым объемом загрузки // Электроника и микроэлектроника СВЧ. 2023. Т. 1. С. 565–568. EDN: ZYESIH.
  21. Bogdashov A.A., Denisenko A.N., Glyavin M.Yu., Krapivnitskaia T.O., Peskov N.Yu., et al. Experimental study of the dynamics of microwave pyrolysis of peat // ITM Web of Conferences. 2019. Vol. 30. P. 12006. doi: 10.1051/itmconf/20193012006.
  22. Krapivnitskaia T.O., Bogdashov A.A., Denisenko A.N., Glyavin M.Yu., Kalynov Yu.K., Kuzikov S.V., et al. High-temperature microwave pyrolysis of peat as a method to obtaining liquid and gaseous fuels // EPJ Web of Conferences. 2017. Vol. 149. P. 02023. doi: 10.1051/epjconf/201714902023.
  23. Zhang J., Tahmasebi A., Omoriyekomwan J.E., Yu J. Production of carbon nanotubes on bio-char at low temperature via microwave-assisted CVD using Ni catalyst // Diamond and Related Materials. 2019. Vol. 91. P. 98–106. doi: 10.1016/j.diamond.2018.11.012.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».