Study of products derived from the microwave-assisted thermal degradation of high-moor peat
- Authors: Krapivnitckaia T.O.1,2, Ananicheva S.A.1,3, Alyeva A.B.1, Vikharev A.А.1, Peskov N.Y.1,3, Denisenko A.N.1, Glyavin M.Y.1, Zelentsov S.V.1,3, Shulaev N.S.4
-
Affiliations:
- Institute of Applied Physics, Russian Academy of Sciences
- Ufa State Petroleum Technical University
- Lobachevsky State University of Nizhniy Novgorod
- Institute of Chemical Technologies and Engineering of Ufa State Petroleum Technical University (Sterlitamak Branch)
- Issue: Vol 14, No 2 (2024)
- Pages: 265-274
- Section: Chemical technology
- URL: https://journals.rcsi.science/2227-2925/article/view/301319
- DOI: https://doi.org/10.21285/achb.909
- EDN: https://elibrary.ru/YCIVAU
- ID: 301319
Cite item
Full Text
Abstract
Keywords
About the authors
T. O. Krapivnitckaia
Institute of Applied Physics, Russian Academy of Sciences; Ufa State Petroleum Technical University
Email: kto@ipfran.ru
S. A. Ananicheva
Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky State University of Nizhniy Novgorod
Email: bulanova@ipfran.ru
A. B. Alyeva
Institute of Applied Physics, Russian Academy of Sciences
Email: a.alyeva@ipfran.ru
A. А. Vikharev
Institute of Applied Physics, Russian Academy of Sciences
Email: alvikharev@ipfran.ru
N. Yu. Peskov
Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky State University of Nizhniy Novgorod
Email: peskov@ipfran.ru
A. N. Denisenko
Institute of Applied Physics, Russian Academy of Sciences
Email: androu@ipfran.ru
M. Yu. Glyavin
Institute of Applied Physics, Russian Academy of Sciences
Email: glyavin@ipfran.ru
S. V. Zelentsov
Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky State University of Nizhniy Novgorod
Email: zelentsov@chem.unn.ru
N. S. Shulaev
Institute of Chemical Technologies and Engineering of Ufa State Petroleum Technical University (Sterlitamak Branch)
Email: nshulaev@rambler.ru
References
- Hakizimana J.D.K., Kim H.-T. Peat briquette as an alternative to cooking fuel: a techno-economic viability assessment in Rwanda // Energy. 2016. Vol. 102. P. 453–464. doi: 10.1016/j.energy.2016.02.073.
- Arpia A.A., Chen W.-H., Lam S.S., Rousset P., de Luna M.D.G. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating : a comprehensive review // Chemical Engineering Journal. 2021. Vol. 403. P. 126233. doi: 10.1016/j.cej.2020.126233.
- Mushtaq F., Mat R., Ani F.N. A review on microwave assisted pyrolysis of coal and biomass for fuel production // Renewable and Sustainable Energy Reviews. 2014. Vol. 39. P. 555–574. doi: 10.1016/j.rser.2014.07.073.
- Demirbas A., Arin G. An overview of biomass pyrolysis // Energy Sources. 2002. Vol. 24, no. 5. P. 471–482. doi: 10.1080/00908310252889979.
- Бердоносов С.С. Микроволновая химия // Соросовский образовательный журнал. 2001. Т. 7. N 1. C. 32–38.
- Кузнецов Д.В., Раев В.А., Куранов Г.Л., Арапов О.В., Костиков Р.Р. Применение микроволнового излучения в синтезе органических соединений // Журнал общей химии. 2005. Т. 41. N 12. С. 1757–1787. EDN: OYQPTV.
- Mgbemena C.O., Li D., Lin M.-F., Liddel P.D., Katnam K.B., Thakur V.K., et al. Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications : a review of scientific challenges // Composites Part A: Applied Science and Manufacturing. 2018. Vol. 115. P. 88–103. doi: 10.1016/j.compositesa.2018.09.012.
- Морозов О.Г., Самигуллин Р.Р., Насыбуллин А. Р. Микроволновые технологии в процессах переработки и утилизации бытовых полимерных отходов // Известия Самарского научного центра Российской академии наук. 2010. Т. 12. N 4-3. С. 580–582. EDN: NXJUTZ.
- Foong S.Y., Liew R.K., Yang Y., Cheng Y.W., Yek P.N.Y., Wan Mahari W.A., et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions // Chemical Engineering Journal. 2020. Vol. 389. P. 124401. doi: 10.1016/j.cej.2020.124401.
- Patel A., Agrawal B., Rawal B.R. Pyrolysis of biomass for efficient extraction of biofuel // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020. Vol. 42, no. 13. P. 1649–1661. doi: 10.1080/15567036.2019.1604875.
- Fernandez A., Palacios C., Echegaray M., Mazza G., Rodriguez R. Pyrolysis and combustion of regional agro-industrial wastes: thermal behavior and kinetic parameters comparison // Combustion Science and Technology. 2018. Vol. 190, no. 1. P. 114–135. doi: 10.1080/00102202.2017.1377701.
- Dupont C., Chiriac R., Gauthier G., Toche F. Heat capacity measurements of various biomass types and pyrolysis residues // Fuel. 2014. Vol. 115. P. 644–651. doi: 10.1016/j.fuel.2013.07.086.
- Karimi M., Aminzadehsarikhanbeglou E., Vaferi B. Robust intelligent topology for estimation of heat capacity of biochar pyrolysis residues // Measurement. 2021. Vol. 183. P. 109857. doi: 10.1016/j.measurement.2021.109857.
- Li F., Feng J., Zhang H., Li W.-Y. Particle-scale heat and mass transfer processes during the pyrolysis of millimeter-sized lignite particles with solid heat carriers // Applied Thermal Engineering. 2023. Vol. 219. P. 119372. doi: 10.1016/j.applthermaleng.2022.119372.
- Sharifzadeh M., Sadeqzadeh M., Guo M., Borhani T.N., Murthy Konda N.V.S.N., Garcia M.C., et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions // Progress in Energy and Combustion Science. 2019. Vol. 71. P. 1–80. doi: 10.1016/j.pecs.2018.10.006.
- Papari S., Hawboldt K. A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models // Renewable and Sustainable Energy Reviews. 2015. Vol. 52. P. 1580–1595. doi: 10.1016/j.rser.2015.07.191.
- Kan T., Strezov V., Evans T.J. Lignocellulosic biomass pyrolysis : a review of product properties and effects of pyrolysis parameters // Renewable and Sustainable Energy Reviews. 2016. Vol. 57. P. 1126–1140. doi: 10.1016/j.rser.2015.12.185.
- Пат. № 2737007, Российская Федерация, H05B 6/64. Комплекс для микроволнового пиролиза органических материалов / Н.Ю. Песков, Т.О. Крапивницкая, Д.И. Соболев, М.Ю. Глявин, А.Н. Денисенко. Заявл. 29. 06. 2020; опубл. 24. 11. 2020. Бюл. № 33.
- Исламова С.И., Тимофеева С.С., Хаматгалимов А.Р., Ермолаев Д.В. Кинетический анализ термического разложения низинного и верхового торфа // Химия твердого топлива. 2020. № 3. С. 32–41. doi: 10.31857/S0023117720030044. EDN: UASEBA.
- Крапивницкая Т.О., Ананичева С.А., Алыева А.Б., Вихарев А.А., Глявин М.Ю., Денисенко А.Н.. Сравнительные эксперименты по микроволновой и термической деструкции торфа в лабораторных установках с малым объемом загрузки // Электроника и микроэлектроника СВЧ. 2023. Т. 1. С. 565–568. EDN: ZYESIH.
- Bogdashov A.A., Denisenko A.N., Glyavin M.Yu., Krapivnitskaia T.O., Peskov N.Yu., et al. Experimental study of the dynamics of microwave pyrolysis of peat // ITM Web of Conferences. 2019. Vol. 30. P. 12006. doi: 10.1051/itmconf/20193012006.
- Krapivnitskaia T.O., Bogdashov A.A., Denisenko A.N., Glyavin M.Yu., Kalynov Yu.K., Kuzikov S.V., et al. High-temperature microwave pyrolysis of peat as a method to obtaining liquid and gaseous fuels // EPJ Web of Conferences. 2017. Vol. 149. P. 02023. doi: 10.1051/epjconf/201714902023.
- Zhang J., Tahmasebi A., Omoriyekomwan J.E., Yu J. Production of carbon nanotubes on bio-char at low temperature via microwave-assisted CVD using Ni catalyst // Diamond and Related Materials. 2019. Vol. 91. P. 98–106. doi: 10.1016/j.diamond.2018.11.012.
Supplementary files
