Identification of iodothyronines in plant tissues

Cover Page

Cite item

Full Text

Abstract

   It has become widespread knowledge that many signaling molecules are common to organisms of different groups. This is likely to be valid for such important metabolism regulators as iodothyronines. A number of studies have confirmed the presence of thyroid hormone activity in compounds of plant origin. However, these studies do not explain whether the compounds under consideration are iodine derivatives of thyronine, similar to animal and human thyroid hormones, or whether they are mimetics of thyroid hormones. In this work, we aim to verify the presence of iodothyronine analogs with different degrees of iodization in plant tissues.   We also aim to determine iodine concentrations in plant tissue lysates and to compare them with the theoretically calculated values in order to test the assumption about the identity of their structure to human thyroid hormones.   It was shown that tetraiodothyronine (T4) and triiodothyronine (T3) analogs are simultaneously present in potato tubers and wheat leaves. In potato tubers at dormancy, the concentration of T4 was 118 ± 16 nmol/L (n = 15), while the concentration of T3 in the same samples was 4.01 ± 0.96 nmol/L. T4 and T3 concentrations in wheat leaf lysates were 60.24 ± 79 and 6.76 nmol/L (n = 15), respectively. According to the results of inductively coupled plasma mass spectrometry, the studied samples contain iodine in the amounts consistent with the assumption about the presence of tetraiodinated tyronine derivatives.

About the authors

M. I. Garipova

Ufa University of Science and Technology

Email: margaritag@list.ru

V. V. Fedyaev

Ufa University of Science and Technology

Email: vadim.fedyaev@gmail.com

O. I. Datsko

Ufa University of Science and Technology

Email: datsko87@list.ru

References

  1. Liu Y.-C., Yeh C.-T., Lin K.-H. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis // International Journal of Molecular Sciences. 2019. Vol. 20, no. 20. P. 4986. doi: 10.3390/ijms20204986.
  2. Bashkatov S.A., Garipova M.I. On the age-specific neurochemical and endocrine biomarkers of temperament traits in adolescents // Current Opinion in Behavioral Sciences. 2022. Vol. 43. P. 118–124. doi: 10.1016/j.cobeha.2021.09.002. EDN: IGMMDO.
  3. Yen P.M. Physiological and molecular basis of thyroid hormone action // Physiological Reviews. 2001. Vol. 81, no. 3. P. 1097–1142. doi: 10.1152/physrev.2001.81.3.1097.
  4. Garipova M.I., Usmanova R.R. 183 Isolation and partial characterization of a general hormone transporting blood protein complex // Journal of Biomolecular Structure and Dynamics. 2013. Vol. 31, no. s1. P. 118. doi: 10.1080/07391102.2013.786425.
  5. Köhrle J., Biebermann H. 3-Iodothyronamine – a thyroid hormone metabolite with distinct target profiles and mode of action // Endocrine Reviews. 2019. Vol. 40, no. 2. P. 602–630. doi: 10.1210/er.2018-00182.
  6. Lazcano I., Hernández-Puga G., Robles J.P., Orozco A. Alternative ligands for thyroid hormone receptors // Molecular and Cellular Endocrinology. 2019. Vol. 493. P. 110448. doi: 10.1016/j.mce.2019.05.007.
  7. Garipova M.I., Shigapova A.I., Farkhutdinov R.G., Fedyaev V.V., Sotnikova J.M., Yakupova A.B. The distribution of 3,5,3-triiodothyronine between the transport systems of blood and nuclei of the tissues // Journal of Biomolecular Structure and Dynamics (Book of Abstracts. Albany 2019: The 20th Conversation). 2019. Vol. 37, no. s1. P. 43–44. doi: 10.1080/07391102.2019.1604468.
  8. Souza P.C.T., Barra G.B., Velasco L.F.R., Ribeiro I.C.J., Simeoni L.A., Togashi M., et al. Helix 12 dynamics and thyroid hormone receptor activity: experimental and molecular dynamics studies of Ile280 mutants // Journal of Molecular Biology. 2011. Vol. 412, no. 5. P. 882–893. doi: 10.1016/j.jmb.2011.04.014.
  9. Goglia F., Moreno M., Lanni A. Action of thyroid hormones at the cellular level: the mitochondrial target // FEBS Letters. 1999. Vol. 452, no. 3. P. 115–120. doi: 10.1016/S0014-5793(99)00642-0.
  10. Гарипова М.И., Федяев В.В., Фархутдинов Р.Г., Сотникова Ю.М. Выявление соединения, антигеноподобного трийодтиронину, в клетках высших растений // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 4. С. 639–646. doi: 10.21285/2227-2925-2020-10-4-639-646. EDN: CMWQLU.
  11. Рахманкулова З.Ф., Федяев В.В., Подашевка О.А., Усманов И.Ю. Альтернативные пути дыхания и вторичный метаболизм у растений с разными типами адаптивных стратегий при дефиците элементов минерального питания // Физиология растений. 2003. Т. 50. N 2. С. 231–237. EDN: OOULIH.
  12. Wang F., Xing J. Classification of thyroid hormone receptor agonists and antagonists using statistical learning approaches // Molecular Diversity. 2019. Vol. 23. P. 85–92. doi: 10.1007/s11030-018-9857-9.
  13. Chiellini G., Nguyen N.-H., Apriletti J.W., Baxter J.D., Scanlan T.S. Synthesis and biological activity of novel thyroid hormone analogues: 5’-aryl substituted GC-1 derivatives // Bioorganic & Medical Chemistry. 2002. Vol. 10, no. 2. P. 333–346. doi: 10.1016/s0968-0896(01)00284-x.
  14. Lim W., Nguyen N.-H., Yang H.Y., Scanlan T.S., Furlow J.D. A thyroid hormone antagonist that inhibits thyroid hormone action in vivo // Journal of Biological Chemistry. 2002. Vol. 277, no. 38. P. 35664–35670. doi: 10.1074/jbc.M205608200.
  15. Yoshihara H.A.I., Apriletti J.W., Baxter J.D., Scanlan T.S. A designed antagonist of the thyroid hormone receptor // Bioorganic & Medicinal Chemistry Letters. 2001. Vol. 11, no. 21. P. 2821–2825. doi: 10.1016/s0960-894x(01)00521-2.
  16. Lima S.T.C., Merrigan T.L., Rodrigues E.D. Synthetic and plant derived thyroid hormone analogs // Thyroid and parathyroid diseases – new insights into some old and some new issues / ed. L.S. Ward. In Tech, 2012. P. 221–235. doi: 10.5772/35134.
  17. Gupta A., Wamankar S., Gidwani B., Kaur C.D. Herbal drugs for thyroid treatment // International Journal of Pharmacy and Biological Sciences. 2016. Vol. 6, no. 1. P. 62–70.
  18. Mondal S., Mugesh G. Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action // Molecular and Cellular Endocrinology. 2017. Vol. 458. P. 91–104. doi: 10.1016/j.mce.2017.04.006.
  19. Reis L.T.C., da Silva M.R.D., Costa S.L., Velozo E.D.S., Batista R., da Cunha Lima S.T. Estrogen and thyroid hormone receptor activation by medicinal plants from Bahia, Brazil // Medicines. 2018. Vol. 5, no. 1. P. 8. doi: 10.3390/medicines5010008.
  20. Hughes C.L. Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens // Environmental Health Perspectives. 1988. Vol. 78. P. 171–174. doi: 10.1289/ehp.8878171.
  21. Гуссаковский Е.Е., Бабаев Т.А., Туракулов Я.Х. Простой спектрофотометрический метод количественного определения остатков иодаминокислот в иодированных белках // Биоорганическая химия. 1980. Т. 6. N 1. С. 46–50.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).