Study on the ability of activated sludge bacteria to form biofilms in vitro

Cover Page

Cite item

Full Text

Abstract

   The study aims to comparatively characterize in vitro biofilm formation in bacterial cultures isolated from activated sludge, as well as archival cultures capable of xenobiotics biodegradation: Alcaligenes faecalis 2, Acinetobacter guillouiae 11h, Rhodococcus erythropolis ILBIO, and Achromobacter pulmonis PNOS. An analysis of the 16S rRNA nucleotide sequence identified strains isolated from activated sludge: Paenibacillus odorifer, Bacillus subtilis, Micrococcus yunnanensis, and Bacillus proteolyticus.   The formation of biofilms by microorganisms was studied on LB medium and synthetic culture medium (with sodium acetate as a carbon source). With cell growth on LB medium, an increase in biofilm biomass was observed in Paenibacillus odorifer, Bacillus subtilis, Alcaligenes faecalis 2, and Achromobacter pulmonis PNOS. The cultivation stage duration (72 and 144 h), as well as the additional dosing of substrates, had an effect on the biofilm formation process: by 144 h of cultivation, the biomass values amounted to 0.6–1.3 optical units. An average 63–77% increase in biofilm biomass was noted for Bacillus subtilis and Paenibacillus odorifer cells as compared to the 72-hour process. At the final stage of cultivation (144 h), the values of exopolysaccharides in the matrix amounted to over 0.02 optical units for Bacillus subtilis and Paenibacillus odorifer. The metabolic activity of activated sludge bacteria forming the biofilm reached 628–3609 Fl./OD540. Thus, activated sludge microorganisms forming the biofilm were shown to retain viability and metabolic activity during growth under in vitro conditions.

About the authors

A. A. Khasanova

Kazan National Research Technological University

Email: hasanovaaigyl@mail.ru

A. S. Sirotkin

Kazan National Research Technological University

Email: asirotkin66@gmail.com

E. V. Perushkina

Kazan National Research Technological University

Email: perushkina_elena@mail.ru

References

  1. Nicolella C., von Loosdrecht M.C.M., Heijnen J.J. Wastewater treatment with particulate biofilm reactors // Journal of Biotechnology. 2000. Vol. 80, no. 1. P. 1−33. doi: 10.1016/S0168-1656(00)00229-7.
  2. Seviour T., Derlon N., Dueholm M.S., Flemming H.-C., Girbal-Neuhauser E., Horn H., et al. Extracellular polymeric substances of biofilms: suffering from an identity crisis // Water Research. 2019. Vol. 151. P. 1−7. doi: 10.1016/j.watres.2018.11.020.
  3. Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S.А., Kjelleberg S. Biofilms: an emergent form of bacterial life // Nature Reviews Microbiology. 2016. Vol. 14. P. 563−575. doi: 10.1038/nrmicro.2016.94.
  4. Шагинурова Г.И., Гиниятуллин М.А., Перушкина Е.В., Сироткин А.С. Интенсификация работы биологических очистных сооружений производства полисульфидных каучуков // Экология и промышленность России. 2006. N 6. С. 6−10. EDN: JWMGJV.
  5. Mallikarjuna C., Dash R.R. Statistical analysis of treatment of rice mill wastewater using the aerobic inverse fluidized bed biofilm reactor (AIFBBR) // Process Safety and Environmental Protection. 2023. Vol. 171. Р. 470−481. doi: 10.1016/j.psep.2023.01.031.
  6. Abdelfattah A., Hossain M.I., Cheng L. High-strength wastewater treatment using microbial biofilm reactor : a critical review // World Journal of Microbiology and Biotechnology. 2020. Vol. 36. Р. 75. doi: 10.1007/s11274-020-02853-y.
  7. He H., Wagner B.M., Carlson A.L., Yang C., Daigger G.T. Recent progress using membrane aerated biofilm reactors for wastewater treatment // Water Science and Technology. 2021. Vol. 84, no. 9. Р. 2131−2157. doi: 10.2166/wst.2021.443.
  8. Jang Y., Lee S.-H., Kim N.-K, Ahn C.H., Rittmann B.E., Park H.-D. Biofilm characteristics for providing resilient denitrification in a hydrogen-based membrane biofilm reactor // Water Research. 2023. Vol. 231. Р. 119654. doi: 10.1016/j.watres.2023.119654.
  9. Murshid S., Antonysamy A.J., Dhakshinamoorthy G.P., Jayaseelan A., Pugazhendhi A. A review on biofilm-based reactors for wastewater treatment: Recent advancements in biofilm carriers, kinetics, reactors, economics, and future perspectives // Science of the Total Environment. 2023. Vol. 892. Р. 164796. doi: 10.1016/j.scitotenv.2023.164796.
  10. Перушкина Е.В., Садыкова З.О., Сироткин А.С., Мубаракшина Л.Ф. Очистка промышленных сточных вод от восстановленных соединений серы с использованием иммобилизованных микробных культур // Вода: химия и экология. 2013. N 10. С. 39−44. EDN: ROVYIP.
  11. Preda V.G., Săndulescu O. Communication is the key: biofilms, quorum sensing, formation and prevention // Discoveries. 2019. Vol. 7, no. 3. P. e10. doi: 10.15190/d.2019.13.
  12. Radojević I., Jakovljević V., Grujić S., Ostojić A., Ćirković K. Biofilm formation by selected microbial strains isolated from wastewater and their consortia: mercury resistance and removal potential // Research in Microbiology. 2024. Vol. 175, no. 3. P. 104092. doi: 10.1016/j.resmic.2023.104092.
  13. Kim L.H., Jung Y., Yu H.-W., Chae K.-J., Kim I.S. Physicochemical interactions between rhamnolipids and Pseudomonas aeruginosa biofilm layers // Environmental Science & Technology. 2015. Vol. 49, no. 6. P. 3718–3726. doi: 10.1021/es505803c.
  14. Song T., Zhang X., Li J. The formation and distinct characteristics of aerobic granular sludge with filamentous bacteria in low strength wastewater // Bioresource Technology. 2022. Vol. 360. P. 127409. doi: 10.1016/j.biortech.2022.127409.
  15. Singh D., Goswami R.K., Agrawal K., Chaturvedi V., Verma P. Bio-inspired remediation of wastewater: A contemporary approach for environmental clean-up // Current Research in Green and Sustainable Chemistry. 2022. Vol. 5. P. 100261. doi: 10.1016/j.crgsc.2022.100261.
  16. Демаков В.А., Васильев Д.М., Максимова Ю.Г., Павлова Ю.А. Овечкина Г.В., Максимов А.Ю. Бактерии активного ила биологических очистных сооружений, трансформирующие цианопиридины и амиды пиридинкарбоновых кислот // Микробиология. 2015. Т. 84. N 3. С. 369−378. doi: 10.7868/S0026365615030039. EDN: TQQVBB.
  17. Максимова Ю.Г., Быкова Я.Е., Зорина А.С., Никулин С.М., Максимов А.Ю. Влияние немодифицированных многостенных нанотрубок на формирование и разрушение бактериальных биопленок // Микробиология. 2022. Т. 91. N 4. С. 507−516. doi: 10.31857/S0026365621100694. EDN: PXWGDO.
  18. Максимова Ю.Г., Сергеева А.А., Овечкина Г.В., Максимов А.Ю. Деградация пиридина суспензиями и биопленками штаммов Achromobacter pulmonis ПНОС и Burkholderia dolosa БОС, выделенных из активного ила очистных сооружений // Биотехнология. 2020. Т. 36. N 2. С. 86–98. URL: http://www.csl.isc.irk.ru/BD/%D0%96%D1%83%D1%80%D0%BD%D0%B0%D0%BB%D1%8B/%D0%91%D0%B8%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F%202020%20%D0%A236/%E2%84%96%202/86-98.pdf. EDN: IYFZFI.
  19. Зорина А.С., Максимова Ю.Г. Дисперсия моно- и смешанных биопленок Alcaligenes faecalis 2 и Rhodococcus ruber gt 1 // Вестник Пермского университета. Серия Биология. 2019. N 2. C. 153−158. URL: https://cyberleninka.ru/article/n/dispersiya-mono-i-smeshannyh-bioplenok-alcaligenes-faecalis-2-i-rhodococcus-ruber-gt-1. EDN: KAORCR.
  20. Maksimova Y., Bykova Y., Maksimov A. Functionalization of multi-walled carbon nanotubes changes their antibiofilm and probiofilm effects on environmental Bacteria // Microorganisms. 2022. Vol. 10, no. 8. P. 1627. doi: 10.3390/microorganisms10081627.
  21. Singh P., Srivastava S., Malhotra R., Mathur P. Identification of Candida auris by PCR and assessment of biofilm formation by crystal violet assay // Indian Journal of Medical Microbiology. 2023. Vol. 46. P. 100421. doi: 10.1016/j.ijmmb.2023.100421.
  22. Mathur T., Singhal S., Khan S., Upadhyay D.J., Fatma T., Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods // Indian Journal of Medical Microbiology. 2006. Vol. 24, no. 1. P. 25–29. doi: 10.1016/S0255-0857(21)02466-X.
  23. Luzak B., Siarkiewicz P., Boncler M. An evaluation of a new high-sensitivity PrestoBlue assay for measuring cell viability and drug cytotoxicity using EA.hy926 endothelial cells // Toxicology in Vitro. 2022. Vol. 83. P. 105407. doi: 10.1016/j.tiv.2022.105407.
  24. Wei Y., Shen D., Lukwambe B., Wang Y., Yang W., Zhu J., et al. The exogenous compound bacteria alter microbial community and nutrients removal performance in the biofilm unit of the integrated aquaculture wastewater bioremediation systems // Aquaculture Reports. 2022. Vol. 27. P. 101414. doi: 10.1016/j.aqrep.2022.101414.
  25. Zorina A.S., Maksimova Yu.G., Demakov V.A. Biofilm formation by monocultures and mixed cultures of Alcaligenes faecalis 2 and Rhodococcus ruber gt 1 // Microbiology. 2019. Vol. 88. P. 164–171. doi: 10.1134/S0026261719020140.
  26. Nicolella C., van Loosdrecht M.C.M., Heijnen J.J. Wastewater treatment with particulate biofilm reactors // Journal of Biotechnology. 2000. Vol. 80, no. 1. P. 1–33. doi: 10.1016/S0168-1656(00)00229-7.
  27. Zhao J., Liu T., Meng J., Hu Z., Lu X., Hu S., et al. Ammonium concentration determines oxygen penetration depth to impact the suppression of nitrite-oxidizing bacteria inside partial nitritation and anammox biofilms // Chemical Engineering Journal. 2023. Vol. 455. P. 140738. doi: 10.1016/j.cej.2022.140738.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).