Ternary cesium(rubidium) tungstates: production and impedance spectroscopy
- Authors: Dorzhieva S.G.1, Bazarova J.G.1
-
Affiliations:
- Baikal Institute of Nature Management SB RAS
- Issue: Vol 14, No 2 (2024)
- Pages: 166-172
- Section: Chemical Sciences
- URL: https://journals.rcsi.science/2227-2925/article/view/301309
- DOI: https://doi.org/10.21285/achb.910
- EDN: https://elibrary.ru/YBFJXA
- ID: 301309
Cite item
Full Text
Abstract
The work is aimed at the directed synthesis of new phases of tungstates containing mono-, tri-, and tetravalent metals, as well as the determination of their crystallographic, thermal, and electrophysical properties. The study used the method of solid-phase synthesis to obtain tungstate phases with composition MRA0.5(WO4)3 (M – singly, R – triply-, and A – tetra-charged elements) within the temperature range of 400–750 °С. Their crystallographic and thermal characteristics were determined. The synthesized ternary tungstates crystallizing in a hexagonal system were studied using differential scanning calorimetry. The technique revealed an increase in the melting temperatures of compounds with increasing ionic radius of the trivalent cation in the series CsRTi0.5(WO4)3 (R = Al, Cr, Ga, Fe, In). The same correlation is observed when switching from rubidium to cesium derivatives. The thermal stability of ternary titanium and hafnium tungstates was compared. The melting temperatures of RbRTi0.5(WO4)3 are about 20 °С higher than those of their hafnium counterparts. The dielectric characteristics of CsRTi0.5(WO4)3 (R = Fe, Cr) belonging to the ternary tungstate family were analyzed via impedance spectroscopy. The temperature and frequency dependences of the conductivity of ternary tungstates at different frequencies (1 Hz – 1 mHz), measured in heating and cooling modes, are characterized by a slight temperature hysteresis, reaching 10-2–10-3 S/cm in the high-temperature region at activation energy values of 0.4–0.5 eV. The impedance frequency spectra measured within the range of 1 Hz – 1 mHz at different temperatures confirm the ion-conducting properties of the sample, which allows the obtained phases to be considered promising solid electrolytes.
About the authors
S. G. Dorzhieva
Baikal Institute of Nature Management SB RAS
Email: bsesegma@mail.ru
J. G. Bazarova
Baikal Institute of Nature Management SB RAS
Email: jbaz@binm.ru
References
- Lee K.H., Chae K.-W., Cheon C.I., Kim J.S. Photoluminescence and structural characteristics of double tung-states A(M1−XPrX)W2O8 (A = Li, Cs, M = Al, Sc, La) // Journal of the European Ceramic Society. 2010. Vol. 30, no. 2. P. 243–247. doi: 10.1016/j.jeurceramsoc.2009.05.048.
- Yu Y., Wu S., Zhu X., Zhang X., Yu H., Qiu H., et al. Crystal growth, structure, optical properties and laser performance of new tungstate Yb:Na2La4(WO4)7 crystals // Optical Materials. 2021. Vol. 111. P. 110653. doi: 10.1016/j.optmat.2020.110653.
- Bazarov B.G., Dorzhieva S.G., Shendrik R.Yu., Tushinova Yu.L., Bazarova Ts.T., Sofich D.O., et al. Synthesis and luminescent properties of new double Ln2Zr(WO4)5 (Ln = Tb, Dy) tungstates // Chimica Techno Acta. 2022. Vol. 9, no. 2. P. 20229205. doi: 10.15826/chimtech.2022.9.2.05.
- Dorzhieva S.G., Bazarova J.G., Bazarov B.G. Exploration of phase equilibria in the triple molybdate system, electrical properties of new Rb5M1/3Zr5/3(MoO4)6 (M – Ag, Na) phases // Journal of Phase Equilibria and Diffusion. 2021. Vol. 42. P. 824–830. doi: 10.1007/s11669-021-00927-4.
- Цыретарова С.Ю., Еремина Н.С., Кожевникова Н.М., Мокроусов Г.М. Синтез люминофоров красного свечения на основе боросиликатного стекла и фаз переменного состава NaMgSc0.5Lu0.5(MoO4)3 : Eu3+ и Na0.5Mg0.5Sc-Lu0.5(MoO4)3 : Eu3+ со структурой NASICON // Неорганические материалы. 2015. Т. 51. N 12. С. 1374–1379. doi: 10.7868/S0002337X15120143. EDN: UJHQLB.
- Dhiaf M., Megdiche Borchani S., Gargouri M., Guidara K., Megdiche M. Temperature-dependent impedance spectroscopy of monovalent double tungstate oxide // Journal of Alloys and Compounds. 2018. Vol. 767. P. 763–774. doi: 10.1016/j.jallcom.2018.07.128.
- Hota S.S., Panda D., Choudhary R.N.P. Studies of structural, dielectric, and electrical properties of polycrystalline barium bismuth tungstate for thermistor application // Inorganic Chemistry Communications. 2023. Vol. 153. P. 110785. doi: 10.1016/j.inoche.2023.110785.
- Buzlukov A.L., Fedorov D.S., Serdtsev A.V., Kotova I.Yu., Tyutyunnik A.P., Korona D.V. Ion mobility in triple sodium molybdates and tungstates with a NASICON structure // Journal of Experimental and Theoretical Physics. 2022. Vol. 134. P. 42–50. doi: 10.1134/S1063776122010071.
- Serdtsev A., Kotova I., Medvedeva N. First-principles study of electronic structure, sodium diffusion, and (de)intercalation in NASICON NaMR(MoO4)3 (M = Mg, Ni; R = Cr, Fe) // Ionics. 2021. Vol. 27. P. 3383–3392. doi: 10.1007/s11581-021-04133-7.
- Bai C., Lei C., Pan S., Wang Y., Yang Z., Han S., et al. Syntheses, structures and characterizations of Rb3Na(MO4)2 (M = Mo, W) crystals // Solid State Sciences. 2014. Vol. 33. P. 32–37. doi: 10.1016/j.solidstatesciences.2014.04.011.
- Доржиева С.Г., Софич Д.О., Базаров Б.Г., Шендрик Р.Ю., Базарова Ж.Г. Оптические свойства молибдатов с комбинацией редкоземельных элементов // Неорганические материалы. 2021. Т. 57. N 1. С. 57–62. doi: 10.31857/S0002337X21010048. EDN: UGRZBV.
- Кожевникова Н.М. Синтез ап-конверсионного люминофора в системе K2MoO4–BaMoO4–Lu2(MoO4)3, легированного эрбием // Неорганические материалы. 2021. Т. 57. N 2. С. 181–188. doi: 10.31857/S0002337X21010097. EDN: KMPXTG.
- Zouaoui M., Jendoubi I., Zid M.F., Bourguiba N.F. Synthesis, crystal structure and physico-chemical investigations of a new lyonsite molybdate Na0.24Ti1.44(MoO4)3 // Journal of Solid State Chemistry. 2021. Vol. 300. P. 122221. doi: 10.1016/j.jssc.2021.122221.
- Tolstov K.S., Politov B.V., Zhukov V.P., Chulkov E.V., Kozhevnikov V.L. Oxygen non-stoichiometry and phase decomposition of double perovskite-like molybdates Sr2M-MoO6–δ, where M = Mn, Co, and Ni // Materials Letters. 2022. Vol. 316. P. 132039. doi: 10.1016/j.matlet.2022.132039.
- Jansi Rani B., Swathi S., Yuvakkumar R., Ravia G., Rajalakshmi R., A.G. Al-Sehemi, et al. Samarium doped barium molybdate nanostructured candidate for supercapacitors. Journal of Energy Storage. 2022. Vol. 56, pt. A. P. 105945. doi: 10.1016/j.est.2022.105945.
- Кожевникова Н.М., Батуева С.Ю., Гадиров Р.М. Люминесцентные свойства твердых растворов K1–xMg1–xSc(Lu)1+x(MoO4)3 (0 ≤ х ≤ 0.5), легированных ионами Eu3+ // Неорганические материалы. 2018. Т. 54. N 5. С. 482–487. doi: 10.7868/S0002337X18050081. EDN: XNRPZZ.
- Yang Y., Li F., Lu Y., Du Y., Wang L., Chen S., et al. CaGdSbWO8:Sm3+: a deep-red tungstate phosphor with excellent thermal stability for horticultural and white lighting applications // Journal of Luminescence. 2022. Vol. 251. P. 119234. doi: 10.1016/j.jlumin.2022.119234.
- Романова Е.Ю., Базаров Б.Г., Клевцова Р.Ф., Глинская Л.А., Тушинова Ю.Л., Федоров К.Н.. Фазообразование в системе K2MoO4–Lu2(MoO4)3–Hf(MoO4)2. Кристаллоструктурное исследование тройного молибдата K5LuHf(MoO4)6 // Журнал неорганической химии. 2007. Т. 52. N 5. С. 815–818. EDN: IASCEH.
- Базаров Б.Г., Клевцова Р.Ф., Чимитова О.Д., Глинская Л.А., Федоров К.Н., Тушинова Ю.Л.. Фазообразование в системе Rb2MoO4–Er2(MoO4)3–Hf(MoO4)2. Кристаллическая структура нового тройного молибдата Rb5ErHf(MoO4)6 // Журнал неорганической химии. 2006. Т. 51. N 5. С. 866–870. EDN: HTICAN.
- Namsaraeva T.V., Bazarov B.G., Klevtsova R.F., Glinskaya L.A., Fedorov K.N., & Bazarova Zh.G. Subsolidus phase equilibrium in Cs2Mo04-Al2(Mo04)3-Zr(Mo04)2 system and crystal structure of new ternary molybdate CsAlZr0.5(MoO4)3 // Russian Journal of Inorganic Chemistry. 2010. Vol. 55. P. 209–214. doi: 10.1134/S0036023610020129.
Supplementary files

