Biosynthesis of metal nanoparticles and their testing on flax seeds

Cover Page

Cite item

Full Text

Abstract

This work sets out to investigate a green-synthesized biopreparation produced by introducing iron or copper nanoparticles into a microbial liquid-phase biological product (LBP). The obtained nanoparticles were analyzed by diffuse reflectance IR spectroscopy and introduced into the LPB at the stage of its ripening in the LPB:particle solution volume ratio of 50:1. As a result, two new biopreparations – LPB-Fe and LPB-Cu – were obtained. All LPB samples, as well as iron and copper nanoparticles, underwent laboratory testing on flax seeds of Tverskaya variety. Iron or copper nanoparticles in the composition of biological preparations were found to affect positively the process of seed germination. In the LPB-Fe variant, seed germination ranged between 86–91%, which exceeded that in the control by 3–12%. In the LPB-Cu variant, seed germination ranged between 86–93%, which exceeded that in the control by 3–11%. However, in the latter variant, the maximum average length per seedling was 14.5–14.8 cm. The average length per seedling was significantly affected by watering the seeds with a solution containing only iron nanoparticles, with the maximum value of this parameter reaching 16.1±1.2 cm. According to the results obtained, this research direction has good prospects and requires additional experiments by varying the nanoparticle concentration in LBPs.

About the authors

N. A. Lyubimova

FRC V.V. Dokuchaev Soil Science Institute

Email: n.nemygina@gmail.com

G. Yu. Rabinovich

FRC V.V. Dokuchaev Soil Science Institute

Email: 2016vniimz-noo@list.ru

References

  1. Bhagat M., Anand R., Sharma P., Rajput P., Sharma N., Singh K. Review – multifunctional copper nanoparticles: synthesis and applications // ECS Journal of Solid State Science and Technology. 2021. Vol. 10, no. 6. P. 063011– 06321. http://doi.org/10.1149/2162-8777/ac07f8.
  2. Siddiqi K.S., Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review // Biomaterials Research. 2020. Vol. 24. P. 11–25. http://doi.org/10.1186/s40824-020-00188-1.
  3. Iqbal A., Iqbal K., Li B., Gong D., Qin W. Recent advances in iron nanoparticles: preparation, properties, biologicaland environmental application // Journal of Nanoscience and Nanotechnology. 2017. Vol. 17. P. 4386–4409. http://doi.org/10.1166/jnn.2017.14196.
  4. Wee J.L., Law M.C., Chan Y.S., Choy S.Y., Tiong A.N.T. The potential of Fe-based magnetic nanomaterials for the agriculture sector // Chemistry Select. 2022. Vol. 7, no. 17. P. e202104603–e202104633. http://doi.org/10.1002/slct.202104603.
  5. Satdev, Mandal N. A review on effect of copper and iron nanoparticle on agricultural crop // International Journal if Inclusive Development. 2020. Vol. 6, no. 1. P. 31–36. http://doi.org/10.30954/24544132.1.2020.6.
  6. Laporte D., Rodríguez F., González A., Zuniga A., Casto-Nallar E., Saez C.A., et al. Copper-induced concomitant increases in photosynthesis, respiration, and C, N and S assimilation revealed by transcriptomic analyses in Ulva compressa (Chlorophyta) // BMC Plant Biology. 2020. Vol. 20. P. 25–41. https://doi.org/10.1186/s12870-019-2229-5.
  7. Иванищев В.В. Роль железа в биохимии растений // Известия Тульского государственного университета. Естественные науки. 2019. N 3. C. 149–159.
  8. Nguyen D.V., Nguyen H.M., Le N.T., Nguyen K.N., Le H.M., Nguyen A.T., et al. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions // Journal of Plant Growth Regulation. 2022. Vol. 41. P. 364–375. http://doi.org/10.1007/s00344-021-10301-w.
  9. Lopez-Vargas E.R., Ortega-Ortiz H., Cadenas-Pliego G., Romenus K.A., de la Fuente M.C., Benavides-Mendoza A., et al. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes // Applied Sciences. 2018. Vol. 8, no. 7. P. 1020–1035. http://doi.org/10.3390/app8071020.
  10. Thiruvengadam S., Ganesan M., Varadharajaperumal P. Impact on foliar application of copper nanoparticles for the growth in Zea mays // Bioscience Biotechnology Research Communications. 2021. Vol. 14, no. 3. P. 1248–1255. http://dx.doi.org/10.21786/bbrc/14.3.50.
  11. Shende S., Rathod D., Gade A., Rai M. Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.) // IET Nanobiotechnology. 2017. Vol. 11, no. 7. P. 773–781. http://doi.org/10.1049/ietnbt.2016.0179.
  12. Sheykhbaglou R., Sedghi M., Fathi-Achachlouie B. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed // Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences). 2018. Vol. 90, no. 1. P. 485–494. http://doi.org/10.1590/0001-3765201820160251.
  13. Yoon H., Kang Y.-G., Chang Y.-S., Kim J.-H. Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana // Nanomaterials. 2019. Vol. 9, no. 11. P. 1543–1545. http://doi.org/10.3390/nano9111543.
  14. Haydar M.S., Ghosh S., Manda l.P. Application of iron oxide nanoparticles as micronutrient fertilizer in mulberry propagation // Journal of Plant Growth Regulation. 2022. Vol. 41. P. 1726–1746. https://doi.org/10.1007/s00344-021-10413-3.
  15. Rui M., Ma C., Hao Y., Guo J., Rui Yu., Tanget X., et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea) // Frontiers in Plant Science. 2016. Vol. 7. P. 1–10. http://doi.org/10.3389/fpls.2016.00815.
  16. Муродова С.С., Давранов К.Д. Комплексные микробные препараты. Применение в сельскохозяйственной практике // Biotechnologia Acta. 2014. Т. 7. N 6. С. 92–101.
  17. Петрова С.Н., Парахин Н.В. Микробные препараты как способ формирования эффективных растительно-микробных систем // Зернобобовые и крупяные культуры. 2013. N 2. С. 86–91.
  18. Пат. N 2428405, Российская Федерация, C05F 11/02. Способ получения жидкофазного биосредства для растениеводства и земледелия / Г.Ю. Рабинович, Н.В. Фомичева, Ю.Д. Смирнова; заявитель и патентообладатель Государственное научно-исследовательское учреждение Всероссийский научно-исследовательский институт сельскохозяйственного использования мелиорированных земель. Заявл. 10.02.2010; опубл. 10.09.2011. Бюл. N 25.
  19. Любимова Н.А., Рабинович Г.Ю. Влияние магнийсодержащего биосредства на всхожесть и биометрические параметры проростков льна-долгунца // Достижения науки и техники АПК. 2022. Т. 36. N 9. С. 37–42. http://doi.org/10.53859/02352451_2022_36_9_37.
  20. Kuang Y., Wang Q., Chen Z., Megharaj M., Naidu R. Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles // Journal of Colloid and Interface Science. 2013. Vol. 410. P. 67–73. http://doi.org/10.1016/j.jcis.2013.08.020.
  21. Anu Y., Vijay M.D. Camellia sinensis mediated synthesis of iron nanoparticles and its encapsulation for decolorization of dyes // BioChemistry: An Indian Journal. 2016. Vol. 10, no. 1. P. 20–29.
  22. Asghar M.A., Zahir E., Shahid S.M., Khan M.N., Asghar M.A., Iqbal J., et al. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity // LWT – Food Science and Technology. 2018. Vol. 90. P. 98– 107. http://doi.org/10.1016/j.lwt.2017.12.009.
  23. Преч Э., Бюльман Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных: монография / пер. с англ. М.: Мир, 2006. 439 с.
  24. Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентификация органических соединений: монография / пер. с англ. М.: Лаборатория знаний, 2011. 557 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».