Photodestruction of active pharmaceutical substances in the presence of hydrogen peroxide and peroxydisulfate

Cover Page

Cite item

Full Text

Abstract

Studies into photochemical oxidation can enhance the current understanding of degradation processes within aqueous solutions of active pharmaceutical ingredients (APIs). APIs are complex decomposable compounds that, once in reservoirs, cause irreversible consequences in living organisms. The results obtained on the photodestruction of various drugs in water in the presence of hydrogen peroxide and peroxydisulfate contribute to gaining new practical and theoretical knowledge in the field of water treatment, post-treatment, and purification. The paper presents laboratory results on the oxidation of model aqueous solutions of nitrofural, tetracycline, and paracetamol under the combined effect of UV radiation with micro-additives of oxidants (hydrogen peroxide and peroxydisulfate). The reaction order of APIs destruction is determined by the least square method. The results show that the combined effect of UV radiation and microadditives of hydrogen peroxide and peroxydisulfate contributes to both a high degree of purification (up to 98%) and a high rate of oxidative degradation of APIs (nitrofural, tetracycline, and paracetamol) compared to the use of UV radiation separately. The studied drugs can be arranged in the following order in terms of their oxidative degradation transformation ability: nitrofural>tetracycline>paraceta mol. The paper theoretically proves that photochemical destruction in the presence of peroxydisulfate leads to the formation of more highly reactive oxygen-containing radicals, which are involved in the decomposition of nitrofural, tetracycline, and paracetamol.

About the authors

N. A. Ivantsova

Mendeleev University of Chemical Technology of Russia

Email: vantsova.n.a@muctr.ru

M. A. Vetrova

Mendeleev University of Chemical Technology of Russia

Email: vetrova.m.a@muctr.ru

A. A. Churina

Mendeleev University of Chemical Technology of Russia

Email: linachurina@yandex.ru

D. V. Andriyanova

Mendeleev University of Chemical Technology of Russia

Email: anddarya33@mail.ru

References

  1. Баренбойм Г.М., Чиганова М.А. Загрязнение поверхностных и сточных вод лекарственными препаратами // Вода: химия и экология. 2012. N 10. С. 40–46.
  2. Прожерина Ю.А. Фармацевтические отходы как новая экологическая проблема // Ремедиум. 2017. N 11. С. 14–19. https://doi.org/10.21518/1561-59362017-11-14-19.
  3. Jiao J., Li Y., Song Q., Wang L., Luo T., Gao Ch., et al. Removal of pharmaceuticals and personal care products (PPCPs) by free radicals in advanced oxidation processes // Materials. 2022. Vol. 22, no. 15. P. 8152. https://doi.org/10.3390/ma15228152.
  4. Oluwole A.O., Omotola E.O., Olatunji O.S. Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation // BMC Chemystry. 2020. No. 14. https://doi.org/10.1186/s13065-020-00714-1.
  5. Fast S.A., Gude V.G., Truax D.D., Martin J., Magbanua B.S. A critical evaluation of advanced oxidation processes for emerging contaminants removal // Environmental Process. 2017. No. 4. P. 283–302. https://doi.org/10.1007/s40710-017-0207-1.
  6. Parson S. Advanced oxidation processes for water treatment: fundamentals and applications. Canada: IWA Publishing, 2004. 356 p. https://doi.org/10.2166/9781780403076.
  7. Lescano M.R., Lopez A.O., Romero R.L., Zalazar C.S. Degradation of chlorpyrifos formulation in water by the UV/H2O2 process: lumped kinetic modelling of total organic carbon removal // Journal of Photochemistry and Photobiology, A: Chemistry. 2021. Vol. 404. https://doi.org/10.1016/j.jphotochem.2020.112924.
  8. Устинова М.Н., Лебедева О.Е., Курдупова В.И. Фотодеструктивные превращения бензойной кислоты и ее производных // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. N 4. С. 16–23. https://doi.org/10.21285/2227-2925-2017-7-4-16-23.
  9. Bazargan A. Photocatalytic water and wastewater treatment. UK: IWA Publishing Unit, 2022. 220 p.
  10. Saadati F., Keramati N., Ghazi M.M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review // Critical Reviews in Environmental Science and Technology. 2016. Vol. 46, no. 8. P. 757–782. https://doi.org/10.1080/10643389.2016.1159093.
  11. Кармазинов Ф.В., Костюченко С.В., Кудрявцев Н.Н., Храменков С.В. Ультрафиолетовые технологии в современном мире: коллективная монография. Долгопрудный: ИД «Интеллект», 2012. 392 с.
  12. Suheyda A., Gulin E. Green chemistry and water remediation: research and applications // Advances in Green and Sustainable Chemistry. 2021. P. 209–238. https://doi.org/10.1016/B978-0-12-817742-6.00007-4.
  13. Giraldo-Aguirre A.L., Serna-Galvis E.A., Erazo-Erazo E.D., Silva-Agredo J., Giraldo-Ospina H., Flórez-Acosta O.A., et al. Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH // Environmental Science and Pollution Research. 2018. Vol. 25, no. 21. P. 20293–20303. https://doi.org/10.1007/s11356-017-8420-z.
  14. Emzhina V.V., Kuzin E.N., Babusenko E.S., Krutchinina N.E. Photodegradation of tetracycline in presence of H2O2 and metal oxide based catalysts // Journal of Water Process Engineering. 2021. Vol. 39. P. 101696. https://doi.org/10.1016/j.jwpe.2020.101696.
  15. Иванцова Н.А., Захарова Д.С., Ветрова М.А. Исследование процессов фотоокисления водного раствора нитрофурала // Журнал Сибирского федерального университета. Серия: Химия. 2022. Т. 15. N 4. С. 507–517. https://doi.org/10.17516/19982836-0297.
  16. Семченко Т.К., Кабанов С.В. Инструментальные методы анализа. Пенза: Изд-во ПГУ, 2016. 48 с.
  17. Соловей Н.В. Фотометрическое определение тетрациклина гидрохлорида // Фармация. 1974. Т. 23. N 4. C. 72.
  18. Deng Y., Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment // Current Pollution Reports. 2015. Vol. 1. P. 167–176. https://doi.org/10.1007/s40726-015-0015-z.
  19. Wang J.L., Xu L.J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application // Critical Reviews in Environmental Science and Technology. 2012. Vol. 42. P. 251–325. http://dx.doi.org/10.1080/10643389.2010.507698.
  20. Boreen A.L., Arnold W.A., McNeill K. Photodegradation of pharmaceuticals in the aquatic environment: a review // Aquatic Sciences. 2003. Vol. 65. P. 320–341. https://doi.org/10.1007/s00027-003-0672-7.
  21. Changotra R., Rajput H., Dhir A. Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment // Journal of Photochemistry and Photobiology A: Chemistry. 2019. Vol. 376. P. 175–184. https://doi.org/10.1016/j.jphotochem.2019.02.029.
  22. Устинова М.Н., Лебедева О.Е. Инактивация N-(4-гидроксифенил)ацетамида пероксидными окислительными системами // Научные ведомости БелГУ. Серия: Естественные науки. 2014. N 10. C. 117–120.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).