Amino acid composition of pollen Pinus sylvestris L. and Pinus sibirica Du Tour growing in the Baikal region

Cover Page

Cite item

Full Text

Abstract

The purpose of the study was to determine the qualitative and quantitative amino acid composition of pollen Pinus sylvestris L. and Pinus sibirica Du Tour. Pine pollen was collected in June 2021 at natural sites on the southeastern coast of Lake Baikal. The mass fraction of crude protein was determined by the Kjeldahl method; the protein composition and individual amino acid content were determined by high-performance liquid chromatography with post-column modification of ninhydrin on an LA8080 automatic analyser (Hitachi, Japan). The crude protein content of the pollen was 14.38–15.94%. Pine pollen protein is shown to contain 17 amino acids, including 9 essential amino acids: valine, isoleucine, leucine, threonine, methionine, phenylalanine, lysine, histidine, and arginine. The content of the sum of amino acids was 141.4–156.5 mg/g, including essential amino acids 45.9-48.4%. The following amino acids are dominant in Pinus sylvestris and Pinus sibirica pollens (mg/g): monoaminodicarboxylic acids – glutamic (21.3–24.2) and aspartic (13.0–14.2), diaminocarboxylic acid arginine (17.0–17.4) and heterocyclic amino acid proline (14.7–16.2). The obtained results can be useful in the development of drugs and biologically active additives based on pollen Pinus sylvestris and Pinus sibirica, which, due to the presence of the above amino acids, have a nootropic, immunomodulatory, cardiac stimulating, and detoxifying effect.

About the authors

V. G. Shiretorova

Baikal Institute of Nature Management SB RAS

Email: vgshiretorova@mail.ru

S. A. Erdyneeva

Baikal Institute of Nature Management SB RAS; Banzarov Buryat State University

Email: esssa198013@gmail.com

L. D. Radnaeva

Baikal Institute of Nature Management SB RAS; Banzarov Buryat State University

Email: radld@mail.ru

References

  1. Stanley R.G., Linskens H.F. Pollen: biology, biochemistry, management. New-York: Springer Science & Business Media, 2012. 310 p.
  2. Keriene I., Šauliene I., Šukiene L., Judžentiene A., Ligor M., Buszewski B. Patterns of phenolic compounds in Betula and Pinus pollen // Plants. 2023. Vol. 12, no. 2. P. 356. doi: 10.3390/plants12020356.
  3. Olennikov D.N., Shishmarev V.M., Shiretorova V.G. Alkyl cinnamates from pollen of Pinus sylvestris // Chemistry оf Natural Compounds. 2023. Vol. 59, no. 2. P. 207–211. doi: 10.1007/s10600-023-03957-1.
  4. Ширеторова В.Г., Эрдынеева С.А., Раднаева Л.Д. Элементный состав пыльцы Pinus sylvestrys L., P. sibirica Du Tour и P. pumila (Pall.) Regel // Химия растительного сырья. 2022. N 2. С. 233–242. doi: 10.14258/jcprm.20220210171. EDN: XWHTPR.
  5. Erdyneeva S.A., Shiretorova V.G., Tykheev Zh.A., Radnaeva L.D. Fatty-acid composition of pollen from Pinus sylvestris, P. sibirica, and P. pumila // Chemistry of Natural Compounds. 2021. Vol. 57. P. 741–742. doi: 10.1007/s10600-021-03462-3.
  6. Liang S.-B., Liang N., Bu F.-L., Lai B.-Y., Zhang Y.-P., Cao H.-J. et al. The potential effects and use of Chinese herbal medicine pine pollen (Pinus pollen): a bibliometric analysis of pharmacological and clinical studies // World Journal of Traditional Chinese Medicine. 2020. Vol. 6, no. 2. P. 163–170. doi: 10.4103/wjtcm.wjtcm_4_20.
  7. Jin X., Cong T., Zhao L., Ma L., Li R., Zhao P., et al. The protective effects of Masson pine pollen aqueous extract on CC14-induced oxidative damage of human hepatic cells // International Journal of Clinical and Experimental Medicine. 2015. Vol. 8, no. 10. P. 17773–17780.
  8. Zhou C., Yin S., Yu Z., Feng Y., Wei Kai, Ma W. Preliminary characterization, antioxidant and hepatoprotective activities of polysaccharides from Taishan Pinus massoniana pollen // Мolecules. 2018. Vol. 23, no. 2. P. 281. doi: 10.3390/molecules23020281.
  9. Hongqi S., Zhou S., Huan W., Yongqiang M., Xiangyun N., Ruichang C. Taishan Pinus massoniana pollen polysaccharide inhibits H9N2 subtype influenza virus infection both in vitro and in vivo // Veterinary Microbiology. 2020. Vol. 248. P. 108803. doi: 10.1016/j.vetmic.2020.108803.
  10. Sha Z., Shang H., Miao Y., Huang J., Niu X., Chen R. Polysaccharides from Pinus massoniana pollen improve intestinal mucosal immunity in chickens // Poultry Science. 2021. Vol. 100, no. 2. P. 507–516. doi: 10.1016/j.psj.2020.09.015.
  11. Ma D., Wang Z., He Z., Wang Z., Chen Q., Qin F., et al. Pine pollen extract alleviates ethanol-induced oxidative stress and apoptosis in HepG2 cells via MAPK signaling // Food and Chemical Toxicology. 2023. Vol. 171. P. 113550. doi: 10.1016/j.fct.2022.113550.
  12. Choi E.-M. Antinociceptive and antiinflammatory activities of pine (Pinus densiflora) pollen extract // Phytotherapy Research. 2007. Vol. 21, no. 5. P. 471–475. doi: 10.1002/ptr.2103.
  13. Табаленкова Г.Н., Розенцвет О.А. Аминокислотный состав листьев трех видов рода Artemisia L., произрастающих в условиях Приэльтонья // Химия растительного сырья. 2021. N 3. С. 219–225. DOI: 10.14258/ cprm.2021038736. EDN: XWRYHF.
  14. Недилько О.В., Яницкая А.В. Изучение аминокислотного состава надземной и подземной частей солодки голой // Химия растительного сырья. 2020. N 1. С. 251–256. doi: 10.14258/jcprm.2020014678. EDN: LBKAWL.
  15. Moran-Palacio E.F., Tortoledo-Ortiz O., Yañez-Farias G.A., Zamora-Álvarez L.A., Stephens-Camacho N.A., Soñanez-Organis J.G., et al. Determination of amino acids in medicinal plants from Southern Sonora, Mexico // Tropical Journal of Pharmaceutical Research. 2014. Vol. 13, no. 4. P. 601–606. doi: 10.4314/tjpr.v13i4.17.
  16. Alsaedi S., Aljeddani G. Phytochemical analysis and bioactivity screening of primary and secondary metabolic products of medicinal plants in the Valleys of Medina Region Saudi Arabia // Advances in Biological Chemistry. 2022. Vol. 12, no. 4. P. 92–115 doi: 10.4236/abc.2022.124009.
  17. Wani S.S, Dar P.A, Zargar S.M, Dar T.A. Therapeutic potential of medicinal plant proteins: present status and future perspectives // Current Protein & Peptide Science. 2020. Vol. 21, no. 5. P. 443–487. doi: 10.2174/1389203720666191119095624.
  18. Trovato M., Funck D., Forlani G., Okumoto S., Amir R. Editorial: amino acids in plants: regulation and functions in development and stress defense // Frontiers in Plant Science. 2021. Vol. 12. P. 772810. doi: 10.3389/fpls.2021.772810.
  19. Бидарова Ф.Н., Сидакова Т.М., Кисиева М.Т. Исследование аминокислотного состава пыльцы сосны обыкновенной (Pinus sylvestris L.), произрастающей на территории РСО-Алания // Международный журнал прикладных и фундаментальных исследований. 2017. N 12-2. С. 267–271. EDN: YMHHUE.
  20. Аларкон Н.Л., Минина Е.Г., Митрофанов Т.К., Ларионова Н.А., Толкачев О.Н. Аминокислоты пыльцы кедра сибирского // Физиология растений. 1978. Т. 25. N 4. С. 855–857.
  21. Budniak L., Slobodianiuk L., Marchyshyn S., Potishnyi I. Determination of amino acids of plants from Angelica L. genus by HPLC method // Pharmacia. 2022. Vol. 69, no. 2. P. 437–446. doi: 10.3897/pharmacia.69.e83705.
  22. Кудряшева А.А., Преснякова О.П. Медико-биологические особенности натуральных пищевых аминокислот // Пищевая промышленность. 2014. N 3. С. 68–73. EDN: RWFTMT.
  23. Wu G. Amino acids: metabolism, functions, and nutrition // Amino Acids. 2009. Vol. 37. P. 1–17. doi: 10.1007/s00726-009-0269-0.
  24. Сыровая А.О., Шаповал Л.Г., Макаров В.А., Петюнина В.Н., Грабовецкая Е.Р., Андреева С.В.. Аминокислоты глазами химиков, фармацевтов, биологов: монография. В 2 т. Харьков: Щедра садиба плюс, 2015. Т. 2. 268 с.
  25. Pahlavani N., Jafari M., Sadeghi O., Rezaei M., Rasad H., Rahdar H.A., Entezari M.H. L-arginine supplementation and risk factors of cardiovascular diseases in healthy men: a double-blind randomized clinical trial // F1000Research. 2014. Vol. 3. P. 306. doi: 10.12688/f1000research.5877.1.
  26. Appleton J. Arginine: clinical potential of a semi-essential amino acid // Alternative Medicine Review. 2002. Vol. 7, no. 6. P. 512–522.
  27. Wu G., Bazer F.W., Burghardt R.C., Johnson G.A., Kim S.W., Knabe D.A., et al. Proline and hydroxyproline metabolism: implications for animal and human nutrition // Amino Acids. 2011. Vol. 40. P. 1053–1063. doi: 10.1007/s00726-010-0715-z.
  28. Hu S., He W., Wu G. Hydroxyproline in animal metabolism, nutrition, and cell signaling // Amino Acids. 2022. Vol. 54. P. 513–528. doi: 10.1007/s00726-021-03056-x.
  29. Trovato M., Forlani G., Signorelli S., Funck D. Proline metabolism and its functions in development and stress tolerance // Osmoprotectant-mediated abiotic stress tolerance in plants: recent advances and future perspectives / eds M.A. Hossain, V. Kumar, D.J. Burritt, M. Fujita, P.S.A. Mäkelä. Cham: Springer, 2019. P. 41–72. doi: 10.1007/978-3-030-27423-8_2.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).