Protatrans – growth biostimulants for centomopathogenic bacteria Bacillus thuringiensis

Cover Page

Cite item

Full Text

Abstract

The study investigates the use of protatran compounds as growth stimulators for Bacillus thuringiensis bacteria, which are widely used as producers of biopesticides. Cultivation of the Bacillus thuringiensis strain subsp. kurstaki was carried out in a Luria-Bertani (LB) liquid medium. Protatrans (2-Me-C6H4OCH2COO- were added to the NN+(CH2CH2OH)3 (1), 4-Cl-C6H4 -SCH2COO-NN(CHCHOH) (2) and 4-Cl-CSOCHCOO NN+(CH2CH2OH)3 (3) media in concentrations of 1×10-4–1×10-8wt %. The LB medium without the addition of compounds 1–3 was used as a control. Cultures were incubated at a temperature of 30°C for 24 hours. The number of Bacillus thuringiensis cells was determined by serial dilution. The maximum growth was observed in a medium containing 1×10-4wt % of protatran 3. The number of cells was almost 10 times (966.7%) higher than in the control. In media with 1×10-5, 1×10-6, 1×10-7 and 1×10-8 wt % of compound 3, the number of cells was 4–7 times higher than in the control (by 371.7–666.7%). Protatrans 1 and 2 had a positive effect on Bacillus thuringiensis, increasing the number of cells by 83–292% compared to control. Therefore, it was demonstrated for the first time that commercially available non-toxic protatran compounds in microconcentrations are powerful growth stimulators for the entomopathogenic bacteria Bacillus thuringiensis. This indicates the potential for significant improvement and cost reduction of biotechnology for the production of bacterial insecticides based on Bacillus thuringiensis, used in agriculture, forestry and homesteads to control harmful insects.

About the authors

S. N. Adamovich

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: mir@irioch.irk.ru

O. F. Vyatchina

Irkutsk State University

Email: olgairk3@rambler.ru

N. A. Rubanenko

Irkutsk State University

Email: rubanenko@mail.ru

E. N. Oborina

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: oborina@irioch.irk.ru

M. D. Katerinich

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: maks.katerinich.1997@mail.ru

I. M. Gritsenko

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: ivan.gritsenko.67@mail.ru

Yu. P. Dzhioev

Irkutsk State Medical University

Email: alanir07@mail.ru

I. A. Ushakov

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: ushakov@irioch.irk.ru

A. S. Grigorieva

Irkutsk State University

Email: nastuscha2011@yandex.ru

B. A. Bugdaeva

Irkutsk State University

Email: bugdaeva2011@mail.ru

K. M. Zalutskaya

Irkutsk State University

Email: kseniazaluckaa2839@gmail.com

L. A. Stepanenko

Irkutsk State Medical University

Email: steplia@mail.ru

N. A.  Arefieva

Irkutsk State University

Email: arefieva.n4@gmail.com

V. P. Salovarova

Irkutsk State University

Email: vsalovarova@gmail.com

V. I. Zlobin

Irkutsk State Medical University; National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya

Email: vizlobin@mail.ru

References

  1. Ibrahim M.A., Griko N., Junker M., Bulla L.A. Bacillus thuringiensis: a genomics and proteomics perspective // Bioengineered Bugs. 2010. Vol. 1, no. 1. Р. 31–50. https://doi.org/10.4161/bbug.1.1.10519.
  2. Sánchez–Yáñez J.M., Rico J.L., Ulíbarri G. Bacillus thuringiensis (Bt) is more than a special agent for biological control of pests // Journal of Applied Biotechnology & Bioengineering. 2022. Vol. 9, no. 2. P. 33–39. doi: 10.15406/jabb.2022.09.00282.
  3. Palma L., Muñoz D., Berry C., Murillo J., Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity // Toxins. 2014. Vol. 6, no. 12. P. 3296–3325. doi: 10.3390/toxins6123296.
  4. Kondo S., Mizuki E., Akao T., Ohba M. Antitrichomonal strains of Bacillus thuringiensis // Parasitology Research. 2002. Vol. 88. P. 1090–1092. doi: 10.1007/s00436-002-0692-6.
  5. Hu Y., Nguyen T.-T., Lee A.C.Y., Urban Jr. J.F., Miller M.M., Zhan B., et al. Bacillus thuringiensis Cry5B protein as a new pan-hookworm cure // International Journal for Parasitology: Drugs and Drug Resistance. 2018. Vol. 8, no. 2. P. 287–294. doi: 10.1016/j.ijpddr.2018.05.001.
  6. Mai L.T., Minh V.V., Tuan V.Ch., My P.T., Ha D.T., Trang L.V.Kh. Selection of Bacillus thuringiensis against pathogenic nematodes attacking pepper tree // Biotekhnologiya. 2020. Vol. 36, no. 3. Р. 57–62. doi: 10.21519/0234-2758-2020-36-3-57-62. EDN: NLUHZT.
  7. Ali B.A., Salem H.H., Wang X.M., Huang T.H., Xie Q.D., Zhang X.Y. Effect of Bacillus thuringiensis var. israelensis endotoxin on the intermediate snail host of Schistosoma japonicum // Current Research in Bacteriology. 2010. Vol. 3, no. 1. Р. 37–41. doi: 10.3923/crb.2010.37.41.
  8. Genena M., Fatma А.М., Genena M. Impact of eight bacterial isolates of Bacillus thuringiensis against the two land snails, Monacha cantiana and Eobania vermiculata (Gastropoda: Helicidae) // Journal of Agricultural Sciences, Mansoura University. 2008. Vol. 33, no. 7. Р. 2853–2861. doi: 10.21608/jppp.2008.217774.
  9. Каменек Л.К., Каменек Д.В. Bacillus thuringiensis: механизм действия и пути использования: монография. Ульяновск: Изд-во УлГУ, 2015. 198 с. EDN: XDTOSR.
  10. Ohba M., Mizuki E., Uemori A. Parasporin, a new anticancer protein group from Bacillus thuringiensis // Anticancer Research. 2009. Vol. 29, no. 1. P. 427–433.
  11. Soberón M., López-Díaz J.A., Bravo A. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms // Peptides. 2013. Vol. 41. P. 87–93. doi: 10.1016/j.peptides.2012.05.023.
  12. Mendoza-Almanza G., Esparza-Ibarra E.L., Ayala-Luján J.L., Mercado-Reyes M., Godina-González S., Hernández-Barrales M., et al. The cytocidal spectrum of Bacillus thuringiensis toxins: from insects to human cancer cells // Toxins. 2020. Vol. 12, no. 5. P. 301. doi: 10.3390/toxins12050301.
  13. Воронков М.Г., Барышок В.П. Атраны – новое поколение биологически активных веществ // Вестник Российской академии наук. 2010. Т. 80. N 11. С. 985– 992. EDN: NUGTPB.
  14. Adamovich S.N. New atranes and similar ionic complexes. Synthesis, structure, properties // Applied Organometallic Chemistry. 2019. Vol. 33, no. 7. P. e4940. doi: 10.1002/aoc.4940.
  15. Adamovich S.N., Ushakov I.A., Oborina E.N., Vashchenko A.V. Silatrane-sulfonamide hybrids: synthesis, characterization, and evaluation of biological activity // Journal Organometallic Chemistry. 2022. Vol. 957. P. 122150. doi: 10.1016/j.jorganchem.2021.122150.
  16. Adamovich S.N., Ushakov I.A., Oborina E.N., Vashchenko A.V., Rozentsveig I.B., Verpoort F. Synthesis, structure and biological activity of hydrometallatranes // Journal of Molecular Liquids. 2022. Vol. 358. P. 119213. doi: 10.1016/j.molliq.2022.119213.
  17. Pavlova O.N., Adamovich S.N., Novikova A.S., Gorshkov A.G., Izosimova O.N., Ushakov I.A., et al. Protatranes, effective growth biostimulants of hydrocarbon-oxidizing bacteria from Lake Baikal, Russia // Biotechnology Reports. 2019. Vol. 24. P. e00371. doi: 10.1016/j.btre.2019.e00371.
  18. Вятчина О.Ф. Штаммы Bacillus thuringiensis, выделенные при эпизоотии лиственничной мухи (Hylemyia laricicola) в Камчатской области // Сибирский экологический журнал. 2004. Т. 11. N 4. С. 501–506. EDN: OWCCSB.
  19. Rojas-Ruiz N.E., Sansinenea-Royano E., Cedillo-Ramirez M.L., Marsch-Moreno R., Sanchez-Alonso P., Vazquez-Cruz C. Analysis

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).