Effect of surfactants (sodium dodecyl sulfate, cetyltrimethylammonium bromide) on cell membrane permeability of red beet roots Beta vulgaris L.

Cover Page

Cite item

Full Text

Abstract

The paper considers the effect of two surfactants - anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB) - on red beet root Beta vulgaris L. Damage to root tissues of Beta vulgaris L. was assessed in terms of an increased release of electrolytes and vacuolar pigments of betacyanins from cells using conductometric and spectrophotometric methods, respectively. It was shown that SDS and CTAB do not impair the cell membrane permeability at concentrations of up to 0.05 and 0.005 g/l, respectively. An increase in the concentration of these surfactants led to a subsequent rise in the electrolyte and betacyanin release from the beet tissues, indicating the negative effect of the surfactants. A good concentration dependence was observed, i.e., higher concentrations of the studied detergents correlated with higher values of the electric conductivity and optical density of the incubation solutions. A significant toxic effect was noted when the test plant was treated with the studied compounds at a concentration of 1 g/l. Thus, two hours after the onset of measurements, the electrical conductivity of the aqueous solution, in which the beet roots previously subjected to 30-min treatment with 1 g/l SDS and CTAB solutions were incubated, increased to 42 and 81 yS/cm, respectively. These values exceeded the reference values by 89 and 272%, respectively. At the same time, the betacyanin yield exceeded the reference values by 327 and 805%, respectively. The experiments showed that SDS and CTAB increase the permeability of plant cell membranes of both plasmalemma and tonoplast. The tested methods proved to be fast (three hours response time) and efficient. These methods can be used to rapidly assess the effect of surfactants on plant bodies, to study the membranotropic effect of substances, and to control the breeding crop plants in terms of their resistance to unfavourable conditions.

About the authors

M. V. Krapivnaya

Irkutsk National Research Technical University

Email: krapivnaya.m@list.ru

V. A. Domracheva

Irkutsk National Research Technical University

Email: domra@istu.edu

D. I. Stom

Irkutsk National Research Technical University; Irkutsk State University; Baikal Museum of the SB RAS

Email: stomd@mail.ru

References

  1. Niraula T.P., Bhattarai A., Chatterjee S.K. Sodium dodecyl sulphate: a very useful surfactant for scientific investigations // Journal of Innovation and Knowledge. 2014. Vol. 2, no. 1. P. 111-113.
  2. Kagalwala A.Y., Kavitha K. Effects of surfactant (sodium lauryl sulphate) on Hydrilla verticillata // International Journal of Life Sciences Biotechnology and Pharma Research. 2012. Vol. 1, no. 2. P. 128-138.
  3. Yadav S.N., Rai S., Shah P., Roy N., Bhattarai A. Spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence of dye in aqueous medium // Journal of Molecular Liquids. 2022. Vol. 355. P. 118949. https://doi.org/10.1016/j.molliq.2022.118949.
  4. Li Y., Lee J.-S. Staring at protein-surfactant interactions: fundamental approaches and comparative evaluation of their combinations: a review // Analytica Chimica Acta. 2019. Vol. 1063. P. 18-39. https://doi.org/10.1016/j.aca.2019.02.024.
  5. Bondi C.A.M., Marks J.L., Wroblewski L.B., Raatikainen H.S., Lenox S.R., Gebhardt K.E. Human and environmental toxicity of sodium lauryl sulfate (SLS): evidence for safe use in household cleaning products // Environmental Health Insights. 2015. Vol. 9. P. 27-32. https://doi.org/10.4137/EHI.S31765.
  6. Rauniyar B.S., Bhattarai A. Study of conductivity, contact angle and surface free energy of anionic (SDS, AOT) and cationic (CTAB) surfactants in water and isopropanol mixture // Journal of Molecular Liquids. 2021. Vol. 323, no. 4. P. 114604. https://doi.org/10.1016/j.molliq.2020.114604.
  7. Genisel M., Eren O. Evaluation of physiological and biochemical aberration linked to effect of sodium dodecyl sulphate on barley seedlings // SN Applied Sciences. 2020. Vol. 2. Article number: 514. https://doi.org/10.1007/s42452-020-2289-z.
  8. Saksonov M.N., Stom D.I., Kupchinsky A.B. Combined action of sodium dodecyl sulphate, tween-85 and oil on duckweed (Lemna minor) // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 720. P. 012051. https://doi.org/10.1088/1755-1315/720/1/012051.
  9. Pang S., Willis L. Final report on the safety assessment of cetrimonium chloride, cetrimonium bromide, and steartrimonium chloride // International Journal of Toxicology. 1997. Vol. 16, no. 3. P. 195-220.
  10. Lai Y.S., Zhou Y., Eustance E., Straka L., Wang Z., Rittmann B.E. Cell disruption by cationic surfactants affects bioproduct recovery from Synechocystis sp. PCC 6803 // Algal Research. 2018. Vol. 34, no. 12. P. 250255. https://doi.org/10.1016/j.algal.2018.08.010.
  11. Юрков А.П., Крюков А.А., Горбунова А.О., Кожемяков А.П., Степанова Г.В., Мачс Э.М.. Молекулярно-генетическая идентификация грибов арбускулярной микоризы // Экологическая генетика. 2018. Т. 16. N 2. С. 11-23. https://doi.org/10.17816/ecogen16211-23.
  12. Allen G.C., Flores-Vergara M.A., Krasynanski S., Kumar S., Thompson W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide // Nature Protocols. 2006. Vol. 1, no. 5. P. 2320-2325. https://doi.org/10.1038/nprot.2006.384.
  13. Tsagkaropoulou G., Allen F.J., Clarke S.M., Camp P.J. Self-assembly and adsorption of cetyltrimethylammonium bromide and didodecyldimethylammonium bromide surfactants at the mica-water interface // Soft Matter. 2019. Vol. 15, no. 41. P. 8402-8411. https://doi.org/10.1039/C9SM01464K.
  14. Aquiirre-Ramirez M., Silva-Jimenez H., Banat I.M., Diaz De Rienzo M.A. Surfactants: physicochemical interactions with biological macromolecules // Biotechnology Letters. 2021. Vol. 43. P. 523-535. https://doi.org/10.1007/s10529-020-03054-1.
  15. Грищенкова Н.Н., Лукаткин А.С. Определение устойчивости растительных тканей к абиотическим стрессам с использованием кондуктометрического метода // Поволжский экологический журнал. 2005. N 1. С. 3-11.
  16. Приходько Н.В. Изменение проницаемости клеточных мембран как общее звено механизмов неспецифической реакции растений на внешние воздействия // Физиология и биохимия культурных растений. 1977. Т. 9. N 3. С. 301-309.
  17. Kolesnikova E.V., Ozolina N.V., Nurminsky V.N., Nesterkina I.S., Sitneva L.A., Lapteva T.I. Evaluation of the effect of oxidative stress on roots of red beet (Beta vulgaris L.) // Journal of Stress Physiology & Biochemistry. 2014. Vol. 10, no. 4. P. 5-12.
  18. Hatsugai N., Katagiri F. Quantification of plant cell death by electrolyte leakage assay // Bio-protocol. 2018. Vol. 8, no. 5. P. 1-7. https://doi.org/10.21769/BioProtoc.2758.
  19. Azeredo H.M.C. Betalains: properties, sources, applications, and stability - a review // International Journal of Food Science and Technology. 2009. Vol. 44, no. 12. P. 2365-2376. https://doi.org/10.1111/j.1365-2621.2007.01668.x.
  20. Sadowska-Bartosz I., Bartosz G. Biological properties and applications of betalains // Molecules. 2021. Vol. 26, no. 9. P. 2520. https://doi.org/10.3390/molecules26092520.
  21. Саенко И.И., Тарасенко О.В., Дейнека В.И., Дейнека Л.А. Бетацианины корнеплодов красной столовой свеклы // Научные ведомости Белгородского государственного университета. Серия: Естественные науки. 2012. Т. 18. N 3. С. 194-200.
  22. Кожемяко А.В., Сергеева И.Ю., Долголюк И.В. Экспериментальное определение биологически активных соединений в выжимках свеклы и моркови, районированных в Сибирском регионе // Техника и технология пищевых производств. 2021. Т. 51. N 1. С. 179-187. https://doi.org/10.21603/2074-9414-2021-1-179-187.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).