Influence of physicochemical properties of depressor additives on their performance in diesel fuels

Cover Page

Cite item

Full Text

Abstract

The work investigates the influence of the physicochemical properties of depressor additives on their performance in diesel fuels of various chemical and fractional compositions. Heavy, summer and marine diesel fuels were used. The following physicochemical properties of fuels were determined: cloud point, freezing point, density, viscosity, fraction composition and hydrocarbon content that formed a complex with carbamide. The content and molar mass distribution of individual n-alkanes in diesel fuels were determined. The following foreign depressant-dispersing additives were used: Dodiflow with codes 4971, 5416, 5817 and 7118, Keroflux with codes 3501, 5696a and Ofi-8863. Their active agents were isolated from the commercial additives by dialysis using semi-permeable rubber membranes. The dropping point of the active agents, their intrinsic viscosity in kerosene and the refractive index at 100 °C were identified. The content of vinyl acetate components and the degree of branching of aliphatic radicals of depressor additives were determined using infrared spectroscopy of the active agents. The relationship between the physicochemical properties of depressor-dispersing additives and their performance in diesel fuels was established. Additives characterised by a relatively high melting point, an average intrinsic viscosity and low branching of aliphatic compounds in the polymer structure exhibit the best performance in fuels. The consumption of additives to achieve the maximum depression of freezing point decreases with the transition from summer to marine fuel and further to heavy diesel fuel. A complex tкп / СВА value, comprising the ratio of the dropping points tкп and the content of vinyl acetate components in the additives, was proposed as a means of predicting the efficiency of depressant additives СВА. In the range of tкп / СВА values of 3.02–4.00 the additives have universal depressant properties. A correlation was established between the refractive index nD100 of additives and the complex value tкп / СВА (R2 = 0.975).

About the authors

N. S. Yakovlev

Tyumen industrial university

Email: jakovlevns@tyuiu.ru

S. G. Agaev

Tyumen industrial university

Email: lagaslav13@mail.ru

References

  1. Башкатова С. Т. Присадки к дизельным топливам: монография. М.: Химия, 1994. 256 с.
  2. Feihe R., Yilin L., Bin S., Chenchen W., Jincan Ya., Hualin L., et al. Structure regulation and influence of comb copolymers as pour point depressants on low temperature fluidity of diesel fuel // Energy. 2022. Vol. 254. P. 124438. https://doi.org/10.1016/j.energy.2022.124438.
  3. Kurniawan M., Norrman J., Paso K. Pour point depressant efficacy as a function of paraffin chainlength // Journal of Petroleum Science and Engineering. 2022. Vol. 212. P. 110250. https://doi.org/10.1016/j.petrol.2022.110250.
  4. Kirgina M., Bogdanov I., Altynov A., Belinskaya N., Orlova A., Nikonova N. Studying the impact of different additives on the properties of straight-run diesel fuels with various hydrocarbon compositions // Oil & Gas Science and Technology. 2021. Vol. 76, no. 40. P. 1–13. https://doi.org/10.1051/ogst/2021018.
  5. Kondrasheva N. K., Rudko V. A., Kondrashev D. O., Konoplin R. R., Smyshlyaeva K. I., Shakleina V. S. Functional influence of depressor and depressordispersant additives on marine fuels and their distillates components // Petroleum Science and Technology. 2018. Vol. 36, no. 24. P. 2099–2105. https://doi.org/10.1080/10916466.2018.1533858.
  6. Han S., Zeng K., Shen S. D., Tan F. Z. Reaction of pore depressants and solvents // Chemistry and Technology of Fuels and Oils. 2011. Vol. 46, no. 6. P. 378–384. https://doi.org/10.1007/s10553-011-0238-7.
  7. Chen F. F., Liu J. B., Yang T. S., Yin S. Y., Su B. T., Xie M. Y., et al. Influence of maleic anhydride-co-methyl benzyl acrylate copolymers modified with long-chain fatty amine and long-chain fatty alcohol on the cold flow properties of diesel fuel // Fuel. 2020. Vol. 268. P. 117392. https://doi.org/10.1016/j.fuel.2020.117392.
  8. Li X., Yuan M., Xue Y., Lin H., Han Sh. Tetradecyl methacrylate-N-methylolacrylamide copolymer: a low concentration and high-efficiency pour point depressant for diesel // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. Vol. 642. P. 128672. https://doi.org/10.1016/j.colsurfa.2022.128672.
  9. Hualin L., Suya Y., Baoting S., Yuan X., Sheng H. Research on combined-pour point depressant of methacrylate-acrylamide copolymers and ethylenevinyl acetate copolymers for diesel fuel // Fuel. 2020. Vol. 290. P. 120002. https://doi.org/10.1016/j.fuel.2020.120002.
  10. Burov E. A., Ivanova L. V., Koshelev V. N., Sorokina A. S. Influence of group hydrocarbon composition of diesel fuels on depressant additive efficiency // Chemistry and Technology of Fuels and Oils. 2020. Vol. 56, no. 2. P. 149–156. https://doi.org/10.1007/s10553-020-01123-9.
  11. Агаев С. Г., Гуров Ю. П., Землянский Е. О. Фазовые переходы и структурообразование в модельных системах твердых углеводородов и депрессорных присадок // Нефтепереработка и нефтехимия. 2004. N 9. С. 37–40.
  12. Агаев С. Г., Гребнев А. Н., Землянский Е. О. Ингибиторы парафиновых отложений бинарного действия // Нефтепромысловое дело. 2008. N 9. С. 46–52.
  13. Yang T. S., Wu J. J., Yuan M. X., Li X., Yin S. Y., Su B. T., et al. Influence of polar groups on the depressive effects of polymethacrylate polymers as cold flow improvers for diesel fuel // Fuel. 2021. Vol. 290. P. 120035. https://doi.org/10.1016/j.fuel.2020.120035.
  14. Caoa J., Liua L., Liua Ch., Heab Ch. Phase transition mechanisms of paraffin in waxy crude oil in the absence and presence of pour point depressant // Journal of Molecular Liquids. 2022. Vol. 345. P. 116989. https://doi.org/10.1016/j.molliq.2021.116989.
  15. Ismailov A. G., Babaev I. D., Agaeva S. M., Abdullaev E. Sh., Shteinshnaider G. M., Akhundova M. M., et al. Increasing the yields of paraffins and winter-grade diesel fuel in urea dewaxing // Chemistry and Technology of Fuels and Oils. 1980. Vol. 16, no. 5-6. P. 372–374. https://doi.org/10.1007/BF00727152.
  16. Зинина Н. Д., Симанская К. Ю., Павловская М. В., Гришин Д. Ф. Депрессорно-диспергирующая присадка для гидроочищенного экологически чистого дизельного топлива // Нефтепереработка и нефтехимия. 2014. N 8. С. 37–40.
  17. Klevtsov V. P., Fialko M. M., Gankina N. L., Rassadina N. F., Fridman R. M. Dialysis of additives in rubber membranes // Chemistry and Technology of Fuels and Oils. 1973. Vol. 9, no. 4. P. 276–278. https://doi.org/10.1007/bf00730417.
  18. Yigit Y., Kilislioglu A., Karakus S., Baydogan N. Determination of the intrinsic iscosity and molecular weight of poly(methyl methacrylate) blends // Journal of Investigations on Engineering & Technology. 2019. Vol. 2, no. 2. P. 34–39.
  19. Stuart B. H. Infrared spectroscopy: fundamentals and applications. John Wiley & Sons, 2004. 224 p. https://doi.org/10.1002/0470011149.
  20. Cristante M., Selves J.-L., Grassy G., Orrit J., Garland E. Choice of paraffin inhibitors for crude oils by principal component analysis // Analytica Chimica Acta. 1990. Vol. 229, no. 2. P. 267–276. https://doi.org/10.1016/s0003-2670(00)85138-7.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).