Study on thermal decomposition and enrichment quality of coal from Mogoin gol deposit in Mongolia
- Authors: Batkhishig D.1, Shagjjav E.1, Batbileg S.1, Ankhtuya A.1, Purevsuren B.1
-
Affiliations:
- Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences
- Issue: Vol 12, No 3 (2022)
- Pages: 462-470
- Section: Chemical technology
- URL: https://journals.rcsi.science/2227-2925/article/view/301195
- DOI: https://doi.org/10.21285/2227-2925-2022-12-3-462-470
- ID: 301195
Cite item
Full Text
Abstract
Keywords
About the authors
D. Batkhishig
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences
Email: batkhishigee@gmail.com
E. Shagjjav
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences
Email: eshagjjav19@gmail.com
S. Batbileg
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences
Email: bilegsanjaa@gmail.com
A. Ankhtuya
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences
Email: ankhtuya36@gmail.com
B. Purevsuren
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences
Email: bpurevsuren.icct@gmail.com
References
- Fetisova O. Yu., Kuznetsov P. N., Purevsuren B., Avid B. A kinetic study of the stepwise thermal decomposition of various coals from Mongolia. Solid Fuel Chemistry. 2021;55(1):1-7. https://doi.org/10.3103/S0361521921010031.
- Widayat, Satriadi H., Wibawa L. P., Hanif G. F., Qomaruddin M. Oil and gas characteristics of coal with pyrolysis process. AIP Conference Proceedings. 2022;2453(1):020077. https://doi.org/10.1063/5.0094759.
- Gu S., Xu Z., Ren Y., Tu Y., Sun M., Liu X. An approach for upgrading lignite to improve slurryability: blending with direct coal liquefaction residue under microwave-assisted pyrolysis. Energy. 2021;222:120012. https://doi.org/10.1016/j.energy.2021.120012.
- Gabriel G. F., Jheyeaaseelan J. S., Kumaraguru D., Osman K., Hamzah N. H. Pyrolytic key indicators of burnt porcine tissue in the presence of petrol under outdoor conditions. Malaysian Journal of Analytical Sciences. 2019;23(2):274-289. https://doi.org/10.17576/mjas-2019-2302-12.
- Deng J., Li Q.-W., Xiao Y., Shu C.-M., Zhang Y.-N. Predictive models for thermal diffusivity and specific heat capacity of coals in Huainan mining area, China. Thermochimica Acta. 2017;656:101-111. https://doi.org/10.1016/j.tca.2017.09.005.
- Gross M. Closing the carbon cycle. Current Biology. 2014;24(13) : R583-R585. https://doi.org/10.1016/j.cub.2014.06.051.
- Morgan T. J., Kandiyoti R. Pyrolysis of coals and biomass: analysis of thermal breakdown and its products. Chemical Reviews. 2014;114(3):1547-1607. https://doi.org/10.1021/cr400194p.
- Jianfang J., Wang Q., Yingyu W., Weicjeng T. GC/MS analysis of coal tar composition produced from coal pyrolysis. Bulletin of the Chemical Society of Ethiopia. 2007;21(2):229-240. https://doi.org/10.4314/bcse.v21i2.21202.
- Liu F.-J., Fan M., Wei X.-Y., Zong Z.-M. Application of mass spectrometry in the characterization of chemicals in coal-derived liquids. Mass Spectrometry Reviews. 2017;36(4):543-579. https://doi.org/10.1002/mas.21504.
- Vasireddy S., Morreale B., Cugini A., Song C., Spivey J. J. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy & Environmental Science. 2011;4(2):311-345. https://doi.org/10.1039/C0EE00097C.
- Chen Z., Wu Y., Huang S., Wu S., Gao J. Coking behavior and mechanism of direct coal liquefaction residue in coking of coal blending. Fuel. 2020;280:118488. https://doi.org/10.1016/j.fuel.2020.118488.
- Zhang L., Wei J., Wang J., Bai Y., Song X., Su W., et al. Deep insight into the ash fusibility and viscosity fluctuation behavior during co-gasification of coal and indirect coal liquefaction residue. Fuel. 2021;305:121620. https://doi.org/10.1016/j.fuel.2021.121620.
- Song Y., Lei S., Li J., Yin N., Zhou J., Lan X. In situ FT-IR analysis of coke formation mechanism during Co-pyrolysis of low-rank coal and direct coal liquefaction residue. Renewable Energy. 2021;179:2048-2062. https://doi.org/10.1016/j.renene.2021.08.030.
- Shen Q., Wu H. Rapid pyrolysis of biochar prepared from slow and fast pyrolysis: the effects of particle residence time on char properties. Proceedings of the Combustion Institute. 2022. https://doi.org/10.1016/j.proci.2022.07.119.
- Lanzerstorfer C. Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements. Energy Reports. 2018;4:660-663. https://doi.org/10.1016/j.egyr.2018.10.010.
- Xian Y., Tao Y., Ma F., Zhou Y. The study of enhanced gravity concentrator for maceral enrichment of low-rank coal with heavy medium. International Journal of Coal Preparation and Utilization. 2021:1-17. https://doi.org/1080/19392699.2021.2000403.
- Erdogdu A. E., Polat R., Ozbay G. Pyrolysis of goat manure to produce bio-oil. Engineering Science and Technology, an International Journal. 2019;22(2):452-457. https://doi.org/10.1016/j.jestch.2018.11.002.
- Salas-Peregrin M., Carrasco-Marin F., Lopez-Garzon F., Moreno-Castilla C. Additions and corrections — adsorption of CO 2 on activated carbons from diluted ambient environments. Energy & Fuels. 1995;9(2):390. https://doi.org/10.1021/ef00050a601.
- Mianowski A., Radko T. Thermokinetic analysis of coal pyrolysis process. Journal of Thermal Analysis Calorim. 1995;43:247-259. https://doi.org/10.1007/BF02635992.
- Li Q.-W., Xiao Y., Wang C.-P., Deng J., Shu C.-M. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel. 2019;250:235-244. https://doi.org/10.1016/j.fuel.2019.04.003.
Supplementary files
