Nanostructured minerals developed to be used as fertilizers: biosafety evaluation
- Authors: Degtyareva I.A.1, Babynin E.V.1, Prishchepenko E.A.1
-
Affiliations:
- Scientific Institution Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of the Russian Academy of Sciences»
- Issue: Vol 12, No 3 (2022)
- Pages: 438-446
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/301192
- DOI: https://doi.org/10.21285/2227-2925-2022-12-3-438-446
- ID: 301192
Cite item
Full Text
Abstract
About the authors
I. A. Degtyareva
Scientific Institution Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of the Russian Academy of Sciences»
Email: peace-1963@mail.ru
E. V. Babynin
Scientific Institution Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of the Russian Academy of Sciences»
Email: edward.b67@mail.ru
E. A. Prishchepenko
Scientific Institution Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of the Russian Academy of Sciences»
Email: pea77@list.ru
References
- Khan M. N., Mobin M., Abbas Z. K., AlMutairi K. A., Siddiqui Z. H. Role of nanomaterials in plants under challenging environments // Plant Physiology and Biochemistry. 2017. Vol. 110. P. 194-209. https://doi.org/10.1016/j.plaphy.2016.05.038.
- Usman M., Farooq M., Wakeel A., Nawaz A., Cheema S. A., Rehman H. U., et al. Nanotechnology in agriculture: current status, challenges and future opportunities // Science of the Total Environment. 2020. Vol. 721. P. 137778. https://doi.org/10.1016/j.scitotenv.2020.137778.
- Sanzari I., Leone A., Ambrosone A. Nanotechnology in plant science: to make a long story short // Frontiers in Bioengineering and Biotechnology. 2019. Vol. 7. https://doi.org/10.3389/fbioe.2019.00120.
- van Dijk M., Meijerink G. W. A review of food security scenario studies: gaps and ways forward. In: The food puzzle: pathways to securing food for all. Wageningen UR, 2014. P. 30-32.
- Manjaiah K. M., Mukhopadhyay R., Paul R., Datta S. C., Kumararaja P., Sarkar B. Clay minerals and zeolites for environmentally sustainable agriculture. In: Modified clay and zeolite nanocomposite materials. The Netherlands, 2019. P. 309-329. https://doi.org/10.1016/B978-0-12-814617-0.00008-6.
- Mumpton F. A. La roca magica: uses of natural zeolites in agriculture and industry // Proceedings of the National Academy of Sciences. 1999. Vol. 96, no. 7. P. 3463-3470. https://doi.org/10.1073/pnas.96.7.3463.
- Oliveira C. R., Rubio J. Adsorption of ions onto treated natural zeolite // Materials Research. 2007. Vol. 10, no. 4. https://doi.org/10.1590/S1516-14392007000400014.
- Chinnamuthu C. R., Boopathi P. M. Nanotechnology and agroecosystem // Madras Agricultural Journal. 2009. Vol. 96, no. 1-6. P. 17-31.
- Arora S., Rajwade J. M., Paknikar K. M. Nanotoxicology and in vitro studies: the need of the hour // Toxicology and Applied Pharmacology. 2012. Vol. 258, no. 2. P. 151-165. https://doi.org/10.1016/j.taap.2011.11.010.
- Lin D., Xing B. Root uptake and phytotoxicity of ZnO nanoparticles // Environmental Science and Technology. 2008. Vol. 42, no. 15. P. 5580-5585. https://doi.org/10.1021/es800422x.
- Petushkov A., Ndiege N., Salem A. K., Larsen S. C. Toxicity of silica nanomaterials: zeolites, mesoporous silica, and amorphous silica nanoparticles // Advances in Molecular Toxicology. 2010. Vol. 4. P. 223-266. https://doi.org/10.1016/S1872-0854(10)04007-5.
- Tarafdar J. C., Xiang Y., Wang W.-N., Dong Q., Biswas P. Standardization of size, shape and concentration of nanoparticle for plant application // Applied Biological Research. 2012. Vol. 14, no. 2. P. 138-144.
- Дегтярева И. А., Бабынин Э. В., Мотина Т. Ю., Давлетшина А. Я., Яппаров И. А. Оценка мутагенных и антимутагенных свойств наноструктурного фосфорита - компонента комплексного удобрения // Агрохимический вестник. 2019. N 1. С. 41-45. https://doi.org/10.24411/0235-2516-2019-10010.
- Degtyareva I. A., Ezhkova A. M., Yapparov A. Kh., Yapparov I. A., Ezhkov V. O., Babynin E. V., et al. Production of nano-bentonite and the study of its effect on mutagenesis in bacteria Salmonella typhimurium // Nanotechnologies in Russia. 2016. Vol. 11, no. 9-10. P. 663-670. https://doi.org/10.1134/S1995078016050050.
- Дурнев А. Д., Суслова Т. Б., Черемисина З. П., Дубовская О. Ю., Нигарова Э. А., Коркина Л. Г.. Исследование мутагенного действия пыли природных цеолитов и хризотил-асбеста // Экспериментальная онкология. 1990. Т. 12. N 2. С. 21-24.
- Ilgren E. B., Brena M. O., Larragoitia J. C., Navarrete G. L., Berna A. F., Krauss E., et al. A reconnaissance study of a potential emerging Mexican mesothelioma epidemic due to fibrous zeolite exposure // Indoor and Built Environment. 2008. Vol. 17, no. 6. P. 496-515. https://doi.org/10.1177/1420326X08096610.
- Pavelic K., Hadzija M. Medical applications of zeolites. In: Handbook of zeolite science and technology. New York, 2003. P. 1143-1174.
- Bunn W. B., Bender J. R., Hesterberg T. W., Chase G. R., Konzen J. L. Recent studies of manmade vitreous fibers. Chronic animal inhalation studies // Journal of Occupational Medicine. 1993. Vol. 35, no. 2. P. 101-113. https://doi.org/10.1097/00043764-199302000-00009.
- Maron D. M., Ames B. N. Revised methods for the Salmonella mutagenicity test // Mutation Research. 1983. Vol. 113, no. 3-4. P. 173-215. https://doi.org/10.1016/0165-1161(83)90010-9.
- Evandri M. G., Battinelli L., Daniele C., Mastrangelo S., Bolle P., Mazzanti G. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay // Food and Chemical Toxicology. 2005. Vol. 43, no. 9. P. 1381-1387. https://doi.org/10.1016/j.fct.2005.03.013.
- Cooper D. L., Lovett S. T. Toxicity and tolerance mechanisms for azidothymidine, a replication gap-promoting agent, in Escherichia coli // DNA Repair (Amst). 2011. Vol. 10, no. 3. P. 260-270.
- Caldini G., Trotta F., Villarini M., Moretti M., Pasquini R., Scassellati-Sforzolini G., et al. Screening of potential lactobacilli antigenotoxicity by microbial and mammalian cell-based tests // International Journal of Food Microbiology. 2005. Vol. 102, no. 1. P. 37-47. https://doi.org/10.1016/j.ijfoodmi-cro.2004.11.015.
- Tagu D., Le Trionnaire G., Tanguy S., Gauthier J.-P., Huynh J.-R. EMS mutagenesis in the pea aphid Acyrthosiphon pisum // G3 Genes, Genomes, Genetics. 2014. Vol. 4, no. 4. P. 657-667. https://doi.org/10.1534/g3.113.009639.
- Abraham L. M., Selva D., Casson R., Leibovitch I. Mitomycin: clinical applications in ophthalmic practice // Drugs. 2006. Vol. 66, no. 3. P. 321-340. https://doi.org/10.2165/00003495-200666030-00005.
- Valverde M., Lozano-Salgado J., Fortini P., Rodriguez-Sastre M. A., Rojas E., Dogliotti E. Hydrogen peroxide-induced DNA damage and repair through the differentiation of human adipose-derived mesenchymal stem cells // Stem Cells International. 2018. P. 1615497. https://doi.org/10.1155/2018/1615497.
- Parodi S., De Flora S., Cavanna M., Pino A., Robbiano L., Bennicelli C., et al. DNA-damaging activity in vivo and bacterial mutagenicity of sixteen hydrazine derivatives as related quantitatively to their carcinogenicity // Cancer Research. 1981. Vol. 41, no. 4. P. 1469-1482.
- Amarh V., Arthur P. K. DNA double-strand break formation and repair as targets for novel antibiotic combination chemotherapy // Future Science OA. 2019. Vol. 5, no. 8. P. FSO411. https://doi.org/10.2144/fsoa-2019-0034.
Supplementary files
