Effect of low concentrations of caffeine and colchicine on microbial growth and biofilm formation
- Authors: Maksimova L.A.1, Markova J.A.1, Turskaya A.L.1, Bybin V.A.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
- Issue: Vol 12, No 2 (2022)
- Pages: 299-309
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/301172
- DOI: https://doi.org/10.21285/2227-2925-2022-12-2-299-309
- ID: 301172
Cite item
Full Text
Abstract
About the authors
L. A. Maksimova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: VendyS@yandex.ru
Ju. A. Markova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: juliam06@mail.ru
A. L. Turskaya
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: turskaya-anna@mail.ru
V. A. Bybin
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: godolin@mail.ru
References
- Seigler D. S. Basic pathways for the origin of allelopathic compounds. In: Allelopathy: a physiological process with ecological implications; Reigosa M. J., Pedrol N., González L. (eds.). Netherlands: Springer, 2006. P. 11–63.
- Wink M. Modes of action of alkaloids. In: Alkaloids: biochemistry, ecology and medicinal applications; Roberts M. F., Wink M. (eds.). New York: Plenum Press, 1998. P. 301–326. https://doi.org/10.1007/978-1-4757-2905-4_12.
- Lei Q., Liu H., Peng Y., Xiao P. In silico target fishing and pharmacological profiling for the isoquinoline alkaloids of Macleaya cordata (Bo Luo Hui) // Chinese Medicine. 2015. Vol. 10, no. 37. https://doi.org/10.1186/s13020-015-0067-4.
- Tiku A. R. Antimicrobial compounds and they role in plant defence. In: Molecular aspects of plantpathogen interaction; Singh A., Singh I. K. (eds.). Singapore: Springer Nature Singapore Pte Ltd., 2018. P. 283–307. https://doi.org/10.1007/978-981-10-7371-7.
- Lahiri D., Dash S., Dutta R., Nag M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants // Journal of Biosciences. 2019. Vol. 44. Article number 52. https://doi.org/10.1007/s12038-019-9868-4.
- Ponzone C., Berlanda D., Donzelli F., Acquati V., Ciulla R., Negrini A., et al. Biotransformation of colchicinoids into their corresponding 3-o-glucosyl derivatives by selected strains of Bacillus megaterium // Molecular Biotechnology. 2014. Vol. 56, no. 7. P. 653– 659. https://doi.org/10.1007/s12033-014-9741-5.
- Dubey K. K., Jawed A., Haque Sh. Structural and metabolic correlation for Bacillus megaterium ACBT03 in response to colchicine biotransformation // Microbiology. 2011. Vol. 80, no. 6. P. 758–767. https://doi.org/10.1134/S0026261711060099.
- Chakraborty P., Dastidar D. G., Paul P., Dutta S., Basu D., Sharma S. R., et al. Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm // Archives of Microbiology. 2020. Vol. 202, no. 3. P. 623–635. https://doi.org/10.1007/s00203-019-01775-0.
- Zorić N., Kosalec I., Tomić S., Bobnjarić I., Jug M., Vlainić T., et al. Membrane of Candida albicans as a target of berberine // BMC Complementary and Alternative Medicine. 2017. Vol. 17. Article number 268. https://doi.org/10.1186/s12906-017-1773-5.
- Kokkrua S., Ismail S. I., Mazlan N., Dethoup T. Efficacy of berberine in controlling foliar rice diseases // European Journal of Plant Pathology. 2020. Vol. 156, no. 1. P. 147–158. https://doi.org/10.1007/s10658-019-01871-3.
- Boulanger S., Mitchell G., Bouarab K., Marsault É., Cantin A., Frost E. H., et al. Bactericidal effect of tomatidine-tobramycin combination against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa is enhanced by interspecific small-molecule interactions // Antimicrobial Agents and Chemotherapy. 2015. Vol. 59, no. 12. P. 7458–7464. https://doi.org/10.1128/AAC.01711-15.
- Saxena P., Joshi Y., Rawat K., Bisht R. Biofilms: architecture, resistance, quorum sensing and control mechanismsm // Indian Journal of Microbiology. 2019. Vol. 59, no. 1. P. 3–12. https://doi.org/10.1007/s12088-018-0757-6.
- Dash S. S., Gummadi S. N. Catabolic pathways and biotechnological applications of microbial caffeine degradation // Biotechnology Letters. 2006. Vol. 28, no. 24. P. 1993–2002. https://doi.org/10.1007/s10529-006-9196-2.
- Korekar G., Kumar A., Ugale Ch. Occurrence, fate, persistence and remediation of caffeine: a review // Environmental Science and Pollution Research. 2020. Vol. 27, no. 28. P. 34715–34733. https://doi.org/10.1007/s11356-019-06998-8.
- Sträuber H., Müller R. H., Babel W. Evidence of Cytochrome P450-catalyzed cleavage of the ether bond of phenoxybutyrate herbicides in Rhodococcus Qingshengii K2-3 // Biodegradation. 2003. Vol. 14, no. 1. P. 41–50. https://doi.org/10.1023/A:1023550209155.
- Robinson T. Biochemical effects of alkaloids. In: The biochemistry of alkaloids. Molecular biology biochemistry and biophysics; Robinson T. (ed.). Berlin: Springer-Verlag Berlin Heidelberg, 1981. Vol. 3. P. 182–210. https://doi.org/10.1007/978-3-642-61830-7_15.
- Wang Y., Kong L., Liu L., Odah K. A., Liu Sh., Jiang X., et al. Antibacterial mode of fibrauretine and synergistic effect with kanamycin against multi-drug resistant Escherichia coli // Biotechnology Letters. 2019. Vol. 41. P. 1023–1031. https://doi.org/10.1007/s10529-019-02697-z.
- Banerjee S. K., Chatterjee S. N. Radiomimetic property of furazolidone and caffeine enhancement of its lethal action on the vibiros // Chemico-Biological Interactions. 1981. Vol. 37, no. 3. P. 321–335. https://doi.org/10.1016/0009-2797(81)90118-6.
- Khameneh B., Iranshahy M., Soheili V., Bazzaz B. S. F. Review on plant antimicrobials: a mechanistic viewpoint // Antimicrobial Resistance and Infection Control. 2019. Vol. 8. Article number 118. https://doi.org/10.1186/s13756-019-0559-6.
- Sledz W., Los E., Paczek A., Rischka J., Motyka A., Zoledowska S., et al. Antibacterial activity of caffeine against plant pathogenic bacteria // Acta Biochimica Polonica. 2015. Vol. 62, no. 3. P. 605–612. https://doi.org/10.18388/abp.2015_1092.
- Bhowmik S., Khanna Sh., Srivastava K., Hasanain M., Sarkar J., Verma S., et al. An efficient combinatorial synthesis of allocolchicine analogues via a triple cascade reaction and their evaluation as inhibitors of insulin aggregation // ChemMedChem. 2013. Vol. 8, no. 11. P. 1767–1772. https://doi.org/10.1002/cmdc.201300302.
- Evans M. L., Chapman M. R. Curli biogenesis: order out of disorder // Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2014. Vol. 1843, no. 8. P. 1551–1558. https://doi.org/10.1016/j.bbamcr.2013.09.010.
- Erskine E., MacPhee C. E., Stanley-Wall N. R. Functional amyloid and other protein fibers in the biofilm matrix // Journal of Molecular Biology. 2018. Vol. 430, no. 20. P. 3642–3656. https://doi.org/10.1016/j.jmb.2018.07.026.
- Boberek J. M., Stach J., Good L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine // PLoS ONE. 2010. Vol. 5, no. 10. https://doi.org/10.1371/journal.pone.0013745.
- Chu M., Ding R., Chu Z., Zhang M., Liu X., Xie Sh., et al. Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor // BMC Complementary and Alternative Medicine. 2014. Vol. 14. Article number 89. https://doi.org/10.1186/1472-6882-14-89.
- Jung K., Fabiani F., Hoyer E., Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing // Open Biology. 2018. Vol. 8, no. 4. https://doi.org/10.1098/rsob.180023.
- Chang H. J., Mayonove P., Zavala A., De Visch A., Minard P., Cohen-Gonsaud M., et al. A modular receptor platform to expand the sensing repertoire of bacteria // ACS Synthetic Biology. 2018. Vol. 7, no. 1. P. 166–175. https://doi.org/10.1021/acssynbio.7b00266.
- Müller C. E., Baqi Y., Namasivayam V. Agonists and antagonists for purinergic receptors. In: Purinergic signaling. Methods in molecular biology; Pelegrín P. (ed.). Humana, New York: Springer Nature, 2020. Vol. 2041. P. 45–64. https://doi.org/10.1007/978-1-4939-9717-6_3.
- Boison D. Regulation of extracellular adenosine. In: The adenosine receptors; Borea P. A., Varani K., Gessi S., Merighi S., Vincenzi F. (eds.). Cham: Humana Press, 2018. Vol. 34. P. 13–32. https://doi.org/10.1007/978-3-319-90808-3_2.
- Shpakov A. O., Derkach K. V., Uspenskaya Z. I., Pertseva M. N. Regulation by cyclic adenosine monophosphate of functional activity of the adenylyl cyclase system in the infusorian Dileptus anser // Journal of Evolutionary Biochemistry and Physiology. 2010. Vol. 46. P. 145–152. https://doi.org/10.1134/S002209301002002X.
- Gersch D., Strunk Ch. Cyclic adenosine 3',5'-monophosphate as “first messenger” in Streptomyces hygroscopicus – bimodal regulation of germination and growth // Current Microbiology. 1980. Vol. 4, no. 5. P. 271–275. https://doi.org/10.1007/bf02602830.
- Gomelsky M. cAMP, c–di–GMP, c–di–AMP and now cGMP: bacteria use them all! // Molecular Microbiology. 2011. Vol. 79, no. 3. P. 562–565. https://doi.org/10.1111/j.1365-2958.2010.07514.x.
- Batoni G., Maisetta G., Brancatisano F. L., Esin S., Campa M. Use of antimicrobial peptides against microbial biofilms: advantages and limits // Current Medicinal Chemistry. 2011. Vol. 18, no. 2. P. 256– 279. https://doi.org/10.2174/092986711794088399.
- Lele O. H., Maniar J. A., Chakravorty R. L., Vaidya Sh. P., Chowdharyet A. Sh. Assessment of biological activities of caffeine // International Journal of Current Microbiology and Applied Sciences. 2016. Vol. 5, no. 5. P. 45–53. http://dx.doi.org/10.20546/ijcmas.2016.505.005.
- Saber N., Kandala N. J. The inhibitory effect of fluphenazine decanoate and caffeine on Staphylococcus aureus efflux pumps // Current Research in Microbiology and Biotechnology. 2018. Vol. 6, no. 2. P. 1530–1535.
- Norizan S. N. M., Yin W.-F., Chan K.-G. Caffeine as a potential quorum sensing inhibitor // Sensors. 2013. Vol. 13, no. 4. P. 5117–5129. https://doi.org/10.3390/s130405117.
- Abisado R. G., Benomar S., Klaus J. R., Dandekar A. A., Chandler J. R. Bacterial quorum sensing and microbial community interactions // mBio. 2018. Vol. 9, no. 3. https://doi.org/10.1128/mBio.02331-17.
- Dwivedi D., Singh V. Effects of the natural compounds embelin and piperine on the biofilmproducing property of Streptococcus mutans // Journal of Traditional and Complementary Medicine. 2016. Vol. 6, no. 1. P. 57–61. https://doi.org/10.1016/j.jtcme.2014.11.025.
- Paluch E., Rewak-Soroczyńska J., Jędrusik I., Mazurkiewicz E., Jermakow K. Prevention of biofilm formation by quorum quenching // Applied Microbiology and Biotechnology. 2020. Vol. 104. P. 1871– 1881. https://doi.org/10.1007/s00253-020-10349-w.
- Bacha K., Tariku Y., Gebreyesus F., Zerihun Sh., Mohammed A., Weiland-Bräuer N., et al. Antimicrobial and anti-quorum sensing activities of selected medicinal plants of Ethiopia: implication for development of potent antimicrobial agents // BMC Microbiology. 2016. Vol. 16. Article number 139. https://doi.org/10.1186/s12866-016-0765-9.
- Whitacre J. M. Degeneracy: a link between evolvability, robustness and complexity in biological systems // Theoretical Biology and Medical Modelling. 2010. Vol. 7, no. 6. https://doi.org/10.1186/1742-4682-7-6.
Supplementary files
