Synthesis and characterization of 2,5-dibutylthio-2,3-dihydro-2-formyl-4H-pyran thiosemicarbazones and their copper complexes
- Authors: Verochkina E.A.1, Vchislo N.V.1, Larina L.I.1, Titov E.A.1,2
-
Affiliations:
- A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
- East-Siberian Institute of Medical and Ecological Research
- Issue: Vol 12, No 1 (2022)
- Pages: 167-172
- Section: Brief communication
- URL: https://journals.rcsi.science/2227-2925/article/view/301128
- DOI: https://doi.org/10.21285/2227-2925-2022-12-1-167-172
- ID: 301128
Cite item
Full Text
Abstract
About the authors
E. A. Verochkina
A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
Email: kleptsova84@mail.ru
N. V. Vchislo
A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
Email: vchislo@bk.ru
L. I. Larina
A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
Email: larina@irioch.irk.ru
E. A. Titov
A. E. Favorsky Irkutsk Institute of Chemistry SB RAS; East-Siberian Institute of Medical and Ecological Research
Email: g57097@yandex.ru
References
- Metwally M. A., Bondock S., Hossam E.-A., Kandeel E.-E. M. Thiosemicarbazides: synthesis and reactions // Journal of Sulfur Chemistry. 2011. Vol. 32, no. 5. P. 489–519. https://doi.org/10.1080/ 17415993.2011.601869.
- Desai S. B., Desai P. B., Desai K. R. Synthesis of some Schiff bases, thiazolidinones and azetidinones derived from 2,6-diaminobenzobisthiazole and their anticancer activities // Heterocyclic Communications. 2001. Vol. 7, no. 1. P. 83–90. https:// doi.org/10.1515/HC.2001.7.1.83.
- Kumar R. S., Arunachalam S. DNA binding and antimicrobial studies of polymer–copper(II) complexes containing 1,10-phenanthroline and L-phenylalanine ligands // European Journal of Medicinal Chemistry. 2009. Vol. 44, no. 5. P. 1878–1883. https://doi.org/10. 1016/j.ejmech.2008.11.001.
- Samadhiya S., Halve A. Synthetic utility of Schiff bases as potential herbicidal agents // Oriental Journal of Chemistry. 2001. Vol. 17, no. 1. P. 119–122.
- Vanco J., Marek J., Travnicek Z., Racanska E., Muselik J., Svajlenova O. Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine // Journal of Inorganic Biochemistry. 2008. Vol. 102, no. 4. P. 595–605. https:// doi.org/10.1016/j.jinorgbio.2007.10.003.
- Tarushi A., Polatoglou E., Kljun J., Turel I., Psomas G., Kessissoglou D. P. Interaction of Zn(II) with quinolone drugs: structure and biological evaluation // Dalton Transactions. 2011. Vol. 40. P. 9461– 9473. https://doi.org/10.1039/c1dt10870k.
- Andres S. A., Bajaj K., Vishnosky N. S., Peterson M. A., Mashuta M. S., Buchanan R. M., et al. Synthesis, characterization, and biological activity of hybrid thiosemicarbazone–alkylthiocarbamate metal complexes // Inorganic Chemistry. 2020. Vol. 59, no. 7. P. 4924–4935. https://doi.org/10.1021/acs.inorgchem. 0c00182.
- Laverick R. J., Zhang N., Reid E., Kim J., Kilpin K. J., Kitchen J. A. Solution processible Co(III) quinoline-thiosemicarbazone complexes: synthesis, structure extension, and Langmuir-Blodgett deposition studies // Journal of Coordination Chemistry. 2021. Vol. 74, no. 1-3. P. 321–340. https://doi.org/ 10.1080/00958972.2021.1879384.
- Пат. № 1727243, СССР. Применение 2-формил-2,5-дибутилтио-2,3-дигидро-4Н-пирана в качестве дезинфицирующего средства / Н. П. Баркова, Н. А. Кейко, Л. Г. Степанова, М. Г. Воронков, А. А. Портяной, Т. И. Никифорова; патентообладатель Иркутский институт органической химии СО РАН. Заявл. 16.02.1990; опубл. 20.10.1999. Бюл. № 33.
- А.С. № 297635, СССР. Способ получения 2-формил-2,5-дибутилтио-2,3-дигидро-γ-пиранов / М. Ф. Шостаковский, Н. А. Кейко, Л. Г. Степанова, Е. Б. Пышная. Заявл. 16.10.1969; опубл. 11.03.1971. Бюл. № 10.
- Кейко Н. А., Степанова Л. Г., Калихман И. Д., Воронков М. Г. Новые 2-формил-2,5-дибутилтио2,3-дигидро-γ-пираны // Известия Академии наук СССР. Серия химическая. 1977. Т. 7. С. 1652–1655.
- Prajapati N. P., Patel H. D. Novel thiosemicarbazone derivatives and their metal complexes: recent development // Synthetic Communications. 2019. Vol. 49, no. 21. P. 2767–2804. https://doi.org/ 10.1080/00397911.2019.1649432.
- Kostas I. D., Steele B. R. Thiosemicarbazone complexes of transition metals as catalysts for crosscoupling reactions // Catalysts. 2020. Vol. 10. P. 1107– 1147. https://doi.org/10.3390/catal10101107.
- Lin L. F., Lee S. J., Chen C.-T. Studies on potential antitumor agents (II). Thiosemicarbazones of pbromophenyl- and o-chlorophenylpyridine-2-carboxaldehydes // Heterocycles. 1977. Vol. 7, no. 1. P. 347– 352. https://doi.org/10.3987/S-1977-01-0347.
- Gatto C. C., Lima F. C., Miguel P. M. Copper(II) complexes with semicarbazones: synthesis, characterization and noncovalent interactions in their crystal structures // Journal of Chemical Sciences. 2020. P. 132–146. Article number 146. https://doi. org/10.1007/s12039-020-01847-5.
- Todorović T. R., Vukašinović J., Portalone G., Suleiman S., Gligorijević N., Bjelogrlić S., et al. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines // Medicinal Chemistry Communications. 2017. Vol. 8, no. 1. P. 103–111. https://doi.org/10.1039/c6md00501b.
- Khan T., Ahmad R., Joshi S., Khan A. R. Anticancer potential of metal thiosemicarbazone complexes: a review // Der Chemica Sinica. 2015. Vol. 6, no. 12. P. 1–11.
- Palamarciuc O., Milunović M. N. M., Sîrbu A., Stratulat E., Pui A., Gligorijevic N., et al. Investigation of the cytotoxic potential of methyl imidazolederived thiosemicarbazones and their copper(II) complexes with dichloroacetate as a co-ligand // New Journal of Chemistry. 2019. Vol. 43, no. 3. P. 1340–1357. https://doi.org/10.1039/C8NJ04041A.
Supplementary files
