A technology for producing electrode materials for lithium-ion batteries from Kazakhstan spodumene raw materials

Cover Page

Cite item

Full Text

Abstract

This study aims to develop a technology for producing innovative electrode materials for modern lithium batteries. An efficient technology for post-purifying of technical lithium carbonate to reach the level of battery quality (99.95%) was developed. This technology involves causticiziation of technical lithium carbonate, ultrafiltration and ion-exchange sorption of a lithium hydroxide solution, followed by precipitation of lithium carbonate with ammonium carbonate. Cation-exchange resins of the brands Purolite S930Plus, Purolite S940 and Purolite S950 were studied for sorption purification of lithium-containing solutions from calcium and magnesium impurities. Purolite S940 and Purolite S950 can be recommended as the most effective cation exchangers. The kinetic parameters of calcium and magnesium sorption were determined using a Purolite S940 cation exchanger. The bicarbonation mode was set at room temperature and a pressure of 0.3 atm. The synthesized samples of lithium-iron-phosphate studied by the sol-gel method. The structures of the obtained electrode materials corresponding to the standard profile of lithium-iron-phosphate were investigated by X-ray diffraction. The synthesized electrode materials in the structure of lithium half- and button cells confirmed their good electrochemical properties, stable operation of batteries and a high intercalation reversibility of lithium ions in the samples within the potential range of 2.5–4.3 V. The main research results are innovative cathode and anode materials of a new generation for modern lithium-ion batteries with significantly increased capacity and stability of operation, obtained from lithium precursors – battery grade lithium carbonate based on domestic mineral and technogenic raw materials.

About the authors

A. K. Zhanabayeva

D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry; Kazakh-British Technical University

Email: a.zhanabayeva@ifce.kz

G. K. Bishimbayeva

D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry

Email: g.bishimbayeva@ifce.kz

D. S. Zhumabayeva

D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry

Email: d.zhumabayeva@ifce.kz

A. M. Nalibayeva

D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry

Email: a.nalibayeva@ifce.kz

Ye. N. Abdikalykov

D. V. Sokolskiy Institute of Fuel, Catalysis and Electrochemistry;

Email: y.abdikalykov@ifce.kz

References

  1. Cho G.-B., Noh J.-P., Sung H.-J., Choi S.-Y., Lee S.-H., Ahn H.-J., et al. Improved electrochemical properties of patterned Si film electrodes // Microelectronic Engineering. 2012. Vol. 89. Р. 104– 108. https://doi.org/10.1016/j.mee.2011.03.141.
  2. Dudney N. J. Thin film micro-batteries // The Electrochemical Society Interface. 2008. Vol. 17, no. 3. P. 44–48. https://doi.org/10.1149/2.F04083IF.
  3. Bakenov Z., Nakayama M., Wakihara M. A nonflammable lithium polymer battery with high performance for elevated temperature applications // Electrochemical and Solid-State Letters. 2007. Vol. 10, no. 9. P. A208–A211. https://doi.org/10.1149/1.2750229.
  4. Bakenov Z., TaniguchiI I. Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries // Electrochemistry Communications. 2010. Vol. 12, no. 1. P. 75–78. https://doi.org/10.1016/j.elecom.2009.10.039.
  5. Nitta N., Wu F., Lee J. T., Yushin G. Li-ion battery materials: present and future // Materials Today. 2015. Vol. 18, no. 5. P. 252–264. https://doi. org/10.1016/j.mattod.2014.10.040.
  6. Schmidt O., Hawkes A., Gambhir A., Staffell I. The future cost of electrical energy storage based on experience rates // Nature Energy. 2017. Vol. 6, no. 8. Article number 17110. 8 p. https://doi.org/ 10.1038/nenergy.2017.110.
  7. Chen J. Recent progress in advanced materials for lithium ion batteries // Materials. 2013. Vol. 6, no. 1. P. 156–183. https://doi.org/10.3390/ma6010156.
  8. Tarascon J. M., Armand M. Issues and challenges facing rechargeable lithium batteries // Nature. 2001. Vol. 414. P. 359–367. https://doi.org/10. 1038/35104644.
  9. Yoshino A. The birth of the lithium-ion battery // Angewandte Chemie International Edition. 2012. Vol. 51, no. 24. P. 5798–5800. https://doi.org/ 10.1002/anie.201105006.
  10. Armand M., Tarascon J. M. Building better batteries // Nature. 2008. Vol. 451. P. 652–657. https://doi.org/10.1038/451652a.
  11. Zaghib K., Dontigny M., Guerfi A., Charest P., Rodrigues I. R., Mauger A., et al. Safe and fast charging Li-ion battery with long shelf life for power applications // Journal of Power Sources. 2011. Vol. 196, no. 8. P. 3949–3954. https://doi.org/ 10.1016/j.jpowsour.2010.11.093.
  12. Bishimbayeva G., Zhumabayeva D., Zhandayev N., Nalibayeva A., Shestakov K., Levanevsky I., et al. Technological improvement lithium recovery methods from primary resources // Oriental Journal of Chemistry. 2018. Vol. 34, no. 6. P. 2762–2769. https://doi.org/10.13005/ojc/340611.
  13. Жанабаева А. К., Налибаева А. М., Бишимбаева Г. К., Жумабаева Д. С., Абдикалыков Е. Н. Оптимизация сернокислотного метода переработки сподуменового сырья для получения карбоната лития аккумуляторного сорта // Инновации в области естественных наук как основа экспортоориентированной индустриализации Казахстана: материалы Международной науч.- практ. конф. (г. Алматы, 04–05 апреля 2019 г.). Алматы: Изд-во РГП «НЦ КПМС РК», 2019. С. 354–357.
  14. Жумабаева Д. С., Жанабаева А. К., Налибаева А. М., Бишимбаева Г. К. Доочистка технического карбоната лития до аккумуляторного качества // Фундаментальные и прикладные научные исследования: актуальные вопросы, достижения и инновации: сб. ст. XXVII Междунар. науч.-практ. конф. (г. Пенза, 15 октября 2019 г.). Пенза: МЦНС «Наука и Просвещение», 2019. С. 25–28.
  15. Bishimbayeva G. K., Zhumabayeva D. S., Zhanabayeva A. K., Nalibayeva A. M., Abdikalykov E. N., Bakenov Zh. B. Prospects for creating a full cycle of lithium production in Kazakhstan – from ore processing to lithium batteries // News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Chemistry and Technology. 2020. Vol. 5, no. 443. P. 38–45. https://doi.org/10.32 014/2020.2518-1491.78.
  16. Bishimbayeva G. K., Zhanabayeva A. K., Kurmanbayeva I., Nalibayeva A. M., Zhumabayeva D. S., Bakenov Zh. B. Synthesis and modification of LiFePO4 cathode materials for lithium-ion batteries by aerosol pyrolysis method // Functional Materials. 2020. Vol. 27, no. 3. P. 581–586. https://doi.org/ 10.15407/fm27.03.581.
  17. Zhumabayeva D. S., Bishimbayeva G. K., Zhanabaeva A. K., Nalibayeva A. M., Abdikalykov Y. N. Full cycle technology of lithium electrode materials for lib from domestic raw materials // News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2020. Vol. 3, no. 441. P. 211–214. https:// doi.org/10.32014/2020.2518-170x.77.
  18. Takahashi M., Tobishima Sh., Takei K., Sakurai Y. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries // Journal of Power Sources. 2001. Vol. 97-98. P. 508–511. https://doi.org/10.1016/S0378-7753(01)00728-5.
  19. Fey G. T.-K., Lu T.-L. Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route // Journal of Power Sources. 2008. Vol. 178, no. 2. P. 807–814. https://doi.org/10.1016/j.jpowsour.2007.09.039.
  20. Satyavani T. V. S. L., Srinivas Kumar A., Subba Rao P. S. V. Methods of synthesis and performance improvement of lithium iron phosphate for high-rate Li-ion batteries: A review // Engineering Science and Technology, an International Journal. 2016. Vol. 9, no. 1. P. 178–188. https://doi.org/10. 1016/j.jestch.2015.06.002.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).