The “Doctor Robik 109” complex biopreparation as a bioagent for utilizing aquatic plant phytomass in biofuel cells
- Autores: Stom D.I.1,2,3, Zhdanova G.O.1, Yudina N.Y.4, Alferov S.V.4, Chesnokova A.N.3, Tolstoy M.Y.3, Kupchinsky A.B.2, Saksonov M.N.1, Zakarchevskiy S.A.3, Enkhdul T.5, Franzetti A.6, Rahimnejad M.7
-
Afiliações:
- Irkutsk State University
- Baikal Museum of the SB RAS
- Irkutsk National Research Technical University
- Tula State University
- Mongolian State University
- University of Milano – Bicocca
- Babol Noshirvani University of Technology
- Edição: Volume 12, Nº 1 (2022)
- Páginas: 50-63
- Seção: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/301117
- DOI: https://doi.org/10.21285/2227-2925-2022-12-1-50-63
- ID: 301117
Citar
Texto integral
Resumo
Sobre autores
D. Stom
Irkutsk State University; Baikal Museum of the SB RAS; Irkutsk National Research Technical University
Email: stomd@mail.ru
G. Zhdanova
Irkutsk State University
Email: zhdanova86@ya.ru
N. Yudina
Tula State University
Email: tysia21-05-90@mail.ru
S. Alferov
Tula State University
Email: chem@tsu.tula.ru
A. Chesnokova
Irkutsk National Research Technical University
Email: chesnokova@istu.edu
M. Tolstoy
Irkutsk National Research Technical University
Email: tolstoi@istu.edu
A. Kupchinsky
Baikal Museum of the SB RAS
Email: albor67@mail.ru
M. Saksonov
Irkutsk State University
Email: msaksonov@mail.ru
S. Zakarchevskiy
Irkutsk National Research Technical University
Email: serzh94lan@mail.ru
T. Enkhdul
Mongolian State University
Email: enkhdult@gmail.com
A. Franzetti
University of Milano – Bicocca
Email: andrea.franzetti@unimib.it
M. Rahimnejad
Babol Noshirvani University of Technology
Email: Rahimnejad_mostafa@yahoo.com
Bibliografia
- Bhagowati B., Ahamad K. U. A review on lake eutrophication dynamics and recent developments in lake modeling // Ecohydrology & Hydrobiology. 2019. Vol. 19, no. 1. P. 155–166. https://doi.org/10.1016/j.ecohyd.2018.03.002.
- Kobanova G. I., Takhteev V. V., Rusanovskaya O. O., Timofeyev M. A. Lake Baikal ecosystem faces the threat of eutrophication // International Journal of Ecology. 2016. Vol. 2016. P. 1–8. http://dx.doi.org/10.1155/2016/6058082.
- Kai W. U., Xuzhou M. A., Youcheng W., Wu W., Yuelin L. Effect of three water plants decomposition on water quality // Journal of Shanghai Ocean University. 2016. Vol. 25, no. 5. P. 726–734.
- Tang J.-Y., Cao P.-P., Xu Ch., Liu M.-S. Effects of aquatic plants during their decay and decomposition on water quality // Ying Yong Sheng Tai Xue Bao. 2013. Vol. 24, no. 1. Р. 83–89.
- Timoshkin O. A., Samsonov D. P., Yamamuro M., Moore M. V., Belykh O. I., Malnik V. V., et al. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world's greatest freshwater biodiversity in danger? // Journal of Great Lakes Research. 2016. Vol. 42, no. 3. P. 487–497. https://doi.org/10.1016/j.jglr.2016.02.011.
- Kravtsova L. S., IzhboldinaIgor L. A., Khanaev I. V., Pomazkina G. V., Rodionova E. V., Domysheva V. M., et al. Nearshore benthic blooms of filamentous green algae in Lake Baikal // Journal of Great Lakes Research. 2014. Vol. 40, no. 2. P. 441– 448. https://doi.org/10.1016/j.jglr.2014.02.019.
- Khanaev I. V., Kravtsova L. S., Maikova O. O., Bukshuk N. A., Sakirko M. V., Kulakova N. V., Butina T. V., et al. Current state of the sponge fauna (Porifera: Lubomirskiidae) of Lake Baikal: Sponge disease and the problem of conservation of diversity // Journal of Great Lakes Research. 2018. Vol. 44, no. 1. P. 77– 85. https://doi.org/10.1016/j.jglr.2017.10.004.
- Malaviya P., Singh A., Anderson T. A. Aquatic phytoremediation strategies for chromium removal // Reviews in Environmental Science and Bio/Technology. 2020. Vol. 19. Р. 897–944. https://doi.org/10.1007/s11157-020-09552-y.
- Delgado-González C. R., Madariaga-Navarrete A., Fernández-Cortés J. M., Islas-Pelcastre M., Oza G., Iqbal H. M. N., et al. Advances and applications of water phytoremediation: a potential biotechnological approach for the treatment of heavy metals from contaminated water // International Journal of Environmental Research and Public Health. 2021. Vol. 18, no. 10. Р. 5215. https://doi.org/10.3390/ijerph18105215.
- Jeevanantham S., Saravanan A., Hemavathy R. V., Senthil Kumar P., Yaashikaa P. R., Yuvaraj D. Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects // Environmental Technology & Innovation. 2019. Vol. 13. P. 264–276. https://doi.org/10.1016/j.eti.2018.12.007.
- Kathi S. Chapter 6 – Bioenergy from phytoremediated phytomass of aquatic plants via gasification // Bioremediation and Bioeconomy. 2016. P. 111–128. https://doi.org/10.1016/B978-0-12-802830-8.00006-X.
- Rezania S., Park J., Rupani P. F., Darajeh N., Xu X., Shahrokhishahraki R. Phytoremediation potential and control of Phragmites australis as a green phytomass: an overview // Environmental Science and Pollution Research. 2019. Vol. 26. Р. 7428–7441. https://doi.org/10.1007/s11356-019-04300-4.
- Castillo-Llamosas A. D., del Río P. G., Pérez-Pérez A., Yáñez R., Garrote G., Gullón B. Recent advances to recover value-added compounds from avocado by-products following a biorefinery approach // Current Opinion in Green and Sustainable Chemistry. 2021. Vol. 28. P. 100433. https://doi.org/10.1016/j.cogsc.2020.100433.
- Abdel-Shafy H. I., Mansour M. S. M. Solid waste issue: sources, composition, disposal, recycling, and valorization // Egyptian Journal of Petroleum. 2018. Vol. 27, no. 4. P. 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003.
- Saravanan А., Kumar P. S., Khoo K. Sh., Show P.-L., Carolin C. F., Jackulin C. F., et al. Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects // Bioresource Technology. 2021. P. 126021. https://doi.org/10.1016/j.biortech.2021.126021.
- da Silva Mazareli R. C., Montoya A. C. V., Delforno T. P., Centurion V. B., de Oliveira V. M., Silva E. L., et al. Enzymatic routes to hydrogen and organic acids production from banana waste fermentation by autochthonous bacteria: optimization of pH and temperature // International Journal of Hydrogen Energy. 2021. Vol. 46, no. 12. P. 8454–8468. https://doi.org/10.1016/j.ijhydene.2020.12.063
- Байбакова О. В. Химико-энзиматическая конверсия в биоэтанол отходов злаковых культур // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6. N 2. С. 51–56. https://doi.org/10.21285/2227-2925-2016-6-2-51-56.
- Ledesma B., Beltramone A. Revalorization of agro-industrial waste as a catalyst source for production of biofuels // Renewable Energy. 2021. Vol. 174. P. 747–757. https://doi.org/10.1016/j.renene.2021.04.131.
- Zanivan J., Bonatto C., Scapini T., Dalastra C., Bazoti S. F., Júnior S. L. A., et al. Evaluation of bioethanol production from a mixed fruit waste by Wickerhamomyces sp. UFFS-CE-3.1.2 // BioEnergy Research. 2021. P. 1–8. https://doi.org/10.1007/s12155-021-10273-5.
- Reshmy R., Philip E., Madhavan A., Sindhu R., Binod P., Balakumaran P. A., et al. Potential utilisation of fruit and vegetable waste: an overview // Sustainable Bioconversion of Waste to Value Added Products. 2021. P. 179–191. https://doi.org/10.1007/978-3-030-61837-7_11.
- Shrestha S., Khatiwada J. R., Sharma H. K., Qin W. Bioconversion of fruits and vegetables wastes into value-added products // Sustainable Bioconversion of Waste to Value Added Products. 2021. P. 145– 163. https://doi.org/10.1007/978-3-030-61837-7_9.
- Mehmood T., Nadeem F., Qamar S. A., Bilal M., Iqbal H. M. N. Bioconversion of agro-industrial waste into value-added compounds // Sustainable Bioconversion of Waste to Value Added Products. 2021. P. 349– 368. https://doi.org/10.1007/978-3-030-61837-7_22.
- Santhi V. P., Sriramavaratharajan V., Murugan R., Masilamani P., Gurav Sh. S., Sarasu V. P., et al. Edible fruit extracts and fruit juices as potential source of antiviral agents: a review // Journal of Food Measurement and Characterization. 2021. Vol. 15. P. 5181–5190. https://doi.org/10.1007/s11694- 021-01090-7.
- Abari A. H., Rourani H. A., Ghasemi S. M., Kim H., Kim Y.-G. Investigation of antioxidant and anticancer activities of unsaturated oligogalacturonic acids produced by pectinase of Streptomyces hydrogenans YAM1 // Scientific Reports. 2021. Vol. 11. Article number 8491. https://doi.org/10.1038/s41598-021-87804-9.
- Lizárraga-Velázquez C. E., Leyva-López N., Hernández C., Gutiérrez-Grijalva E. P., SalazarLeyva J. A., Osuna-Ruíz I., et al. Antioxidant molecules from plant waste: extraction techniques and biological properties // Processes. 2020. Vol. 8, no. 12. P. 1566. https://doi.org/10.3390/pr8121566.
- Varadavenkatesan T., Vinayagam R., Selvaraj R. Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of Vigna mungo and their biological applications // Journal of Molecular Structure. 2017. Vol. 1147. P. 629–635. https://doi.org/10.1016/j.molstruc.2017.07.002.
- Annegowda H. V., Majumder P. Valuable bioactives from vegetable wastes // Valorization of AgriFood Wastes and By-Products. 2021. P. 83–109. https://doi.org/10.1016/B978-0-12-824044-1.00003-9.
- Pandit S., Savla N., Sonawane J. M., Sani A. M., Gupta P. K., Mathuriya A. S., et al. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: recent advances // Fermentation. 2021. Vol. 7, no. 3. P. 169. https://doi.org/10.3390/fermentation7030169.
- Javed M. M., Nisar M. A., Ahmad M. U. Effect of NaCl and pH on bioelectricity production from vegetable waste extract supplemented with cane molasses in dual chamber microbial fuel cell // Pakistan Journal of Zoology. 2021. Vol. 54, no. 1. P. 247–254. https://dx.doi.org/10.17582/journal.pjz/20180611050622.
- Chandra M. S., Srinivasulu M., Yadav P. S., Ramesh B., Narasimha G., Chandrasekhar T. Value added products from agriculture, paper and food waste: a source of bioenergy production. In: Clean Energy Production Technologies. Srivastava M., Srivastava N., Singh R. (eds.). Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-1190-2_3.
- Zhdanova G. O., Konovalova E. Yu., Tolstoy M. Yu., Kashevsky A. V., Barbora L., Goswami P., et al. Comparative analysis of electrogenic activity of complex microbial preparations in microbial fuel cells // IOP Conference Series: Earth and Environmental Science. 2019. Vol. 272, no. 3. P. 032161. https://doi.org/10.1088/1755-1315/272/3/032161.
- Rudenko R. R., Vasilevich E. E., Zhdanova G. O., Chizhick K. I., Topchiy I. A., Stom D. I. The use of urban sewage sludge as a substrate in a microbial fuel cell // International Journal of Engineering & Technology. 2018. Vol. 7, no. 2. P. 277– 280. https://doi.org/10.14419/ijet.v7i2.23.11931.
- Коркина О. С., Сарапулова Г. И., Жданова Г. О., Горбунова Ю. О., Иванчиков Е. А., Стом Д. И.. Микробиологический препарат «Доктор Робик 109» как биоагент для получения электрического тока в МТЭ при добавлении жиров // Известия Иркутского государственного университета. Серия: Биология. Экология. 2019. Т. 28. С. 17–25. https://doi.org/10.26516/2073-3372.2019.28.17.
- Stom D. I., Zhdanova G. O., Kashevskii A. V. New designs of biofuel cells and their work testing // IOP Conference Series: Materials Science and Engineering. 2017. Vol. 262. P. 012219. https://doi.org/10.1088/1757-899X/262/1/012219.
- Grigorova R., Norris J. R. Methods in microbiology. Academic Press, 1990. Vol. 22. 618 р.
- Kaur M., Kumar M., Sachdeva S., Puri S. K. Aquatic weeds as the next generation feedstock for sustainable bioenergy production // Bioresource Technology. 2018. Vol. 251. P. 390–402. https://doi.org/10.1016/j.biortech.2017.11.082.
- Varanasi J. L., Kumari S., Das D. Improvement of energy recovery from water hyacinth by using integrated system // International Journal of Hydrogen Energy. 2018. Vol. 43, no. 3. P. 1303–1318. https://doi.org/10.1016/j.ijhydene.2017.11.110.
- Ndayisenga F., Yu Z., Kabera T., Wang B., Liang H., Phulpoto I. A., et al. Co-substrate facilitated charge transfer for bioelectricity evolution in a toxic blue-green alga-fed microbial fuel cell technology // Clean Technologies and Environmental Policy. 2021. https://doi.org/10.1007/s10098-021-02173-1.
- Sani A. M., Savla N., Pandit S., Mathuriya A. S., Gupta P. K., Khanna N., et al. Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell // Sustainable Energy Technologies and Assessments. 2021. Vol. 48. P. 101572. https://doi.org/10.1016/j.seta.2021.101572.
Arquivos suplementares
