Sorption of silver (I) ions from aqueous solutions using the synthetic sorbent

Cover Page

Cite item

Full Text

Abstract

We study the sorption of silver ions from aqueous solutions by a synthetic chelating sorbent. In the presence of formaldehyde, a polymeric sorbent based on a copolymer of styrene with maleic anhydride, modified with N,N’-diphenylguanidine, was synthesized and further used for extracting Ag(I) ions. The composition and structure of the synthesized polymeric chelating sorbent were studied using IR and UV spectroscopy methods. A simple, inexpensive, and efficient method for extracting Ag(I) ions from aqueous solutions was used. The effect of various parameters on the sorption process was studied, including the acidity of the medium (pH), the initial concentration of the metal ion, the time required to establish complete sorption equilibrium, and ionic strength. The optimum pH value for the extraction of Ag(I) was found to be 6. The process is characterized by a high adsorption capacity reaching 547.2 mg/g. The research results showed that the time required to establish a complete sorption equilibrium for the sorbent modified with N,N’- diphenylguanidine is 60 min. Ag(I) adsorption increases up to the value of ionic strength of μ = 1, after which its intensity decreases. At the final stage, the process of desorption of absorbed silver ions was carried out. During desorption, the best eluting agent for the extraction of Ag(I) was determined to be 0.5 M HNO3. The sorbent can be re-used after regeneration. The copolymer of styrene and maleic anhydride modified with N,N’-diphenylguanidine has a high sorption capacity and, therefore, can be used as a potential adsorbent for the extraction of silver (I) from aqueous solutions.

About the authors

N. T. Afandiyeva

Baku State University

Email: afandiyeva.narmin@mail.ru

A. M. Maharramov

Baku State University

Email: amaharramov@bsu.edu.az

F. M. Chyragov

Baku State University

Email: ciraqov@mail.ru

References

  1. Hadrup N., Lam H. Oral toxicity of silver ions, silver nanoparticles and colloidal silver // Regulatory Toxicology and Pharmacology. 2014. Vol. 68, no. 1. P. 1–7. https://doi.org/10.1016/j.yrtph.2013.11.002.
  2. Kojiro S., Masahiro G. Solvent extraction and stripping of silver Ions in room-temperature Ionic liquids containing calixarenes // Analytical Chemistry. 2004. Vol. 76, no. 17. P. 5039–5044. https://doi.org/10.1021/ac049549x.
  3. Mammadov P. R., Afandiyeva N. T., Chiragov F. M. Simple and rapid spectrophotometric determination method for trace level of silver using 2,2,-di(2,3,4- trihidroksifenilazo)bifenil // New Materials, Compounds and Applications. 2018. Vol. 2, no. 2. P. 123–131.
  4. Эфендиева Н. Т., Магеррамов А. М., Чырагов Ф. М. Концентрирование ионов серебра синтетическим сорбентом из водных растворов // Известия Дагестанского государственного педагогического университета. Естественные и точные науки. 2019. Т. 13. N 1. С. 45–49. https://doi.org/10.31161/1995-0675-2019-13-1-45-49.
  5. Akgül M., Karabakan A., Acar O., Yürüm Y. Removal of silver (I) from aqueous solutions with clinoptilolite // Microporous and Mesoporous Materials. 2006. Vol. 94, no. 1-3. P. 99–104. https://doi.org/10.1016/j.micromeso.2006.02.023.
  6. Afandiyeva N. T. Preconcentration of silver (I) on the modified sorbent from aqueous solutions // New Materials, Compounds and Applications. 2020. Vol. 4, no. 1. P. 54–60.
  7. Virolainen S., Tyster M., Haapalainen M., Sainio T. Ion exchange recovery of silver from concentrated base metal-chloride solutions // Hydrometallurgy. 2015. Vol. 152. P. 100–106. https://doi.org/10.1016/j.hydromet.2014.12.011.
  8. Xie F., Lu D., Yang H., Dreisinger D. B. Solvent extraction of silver and gold from alkaline cyanide solution with LIX 7950 // Mineral Processing and Extractive Metallurgy Review. 2014. Vol. 35, no. 4. P. 229–238. https://doi.org/10.1080/08827508.2013.825615.
  9. Abd El-Ghaffar M. A., Mohamed M. H., Alwakeel K. Z. Adsorption of silver (I) on synthetic chelating polymer derived from 3-amino-1,2,4- triazole-5-thiol and glutaraldehyde // Chemical Engineering Journal. 2009. Vol. 151, no. 1-3. P. 30–38. https://doi.org/10.1016/j.cej.2009.01.039.
  10. Syafiuddin A., Fulazzaky M. A., Salmiati S., Kueh A. B. H., Fulazzaky M., Salim M. R. Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: an exclusive review // Nanotechnology for Environmental Engineering. 2020. Vol. 5, no. 1. Article number 1. https://doi.org/10.1007/s41204-019-0065-3.
  11. Kholmogorova A. S., Chernysh M. L., Neudachina L. K., Puzyrev I. S. Method of adsorptionatomic-absorption determination of silver (I) using a modified polysiloxane // Reactive and Functional Polymers. 2020. Vol. 152. Article number 104596. https://doi.org/10.1016/j.reactfunctpolym.2020.104596.
  12. Li X.-G., Ma X.-L., Sun J., Huang M.-R. Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles // Langmuir. 2009. Vol. 25, no. 3. P. 1675–1684. https://doi.org/10.1021/la802410p.
  13. Anderson B. J., Jenne E. A., Chao T. T. Sorption of silver by poorly crystallized manganese oxides // Geochimica et Cosmochimica Acta. 1973. Vol. 37, no. 3. P. 611–622. https://doi.org/10.1016/0016-7037(73)90222-6.
  14. Jintakosola T., Nitayaphat W. Adsorption of silver (I) from aqueous solution using chitosan/montmorillonite composite beads // Materials Research. 2016. Vol. 19, no. 5. P. 1114–1121. https://doi.org/10.1590/1980-5373-MR-2015-0738.
  15. Atia A. A., Donia A. M., Yousif A. M. Comparative study of the recovery of silver(I) from aqueous solutions with different chelating resins derived from glycidyl methacrylate // Journal of Applied Polymer Science. 2005. Vol. 97, no. 3. P. 806–812. https://doi.org/10.1002/app.21751.
  16. Yirikoglu H., Gülfen M. Separation and recovery of silver(I) ions from base metal ions by melamine‐formaldehyde‐thiourea (MFT) chelating resin // Separation Science and Technology. 2008. Vol. 43, no. 2. P. 376–388. https://doi.org/10.1080/01496390701787305.
  17. Iglesias M., Anticó E., Salvado V. The characterisation of silver sorption by chelating resins containing thiol and amine groups // Solvent Extraction and Ion Exchange. 2001. Vol. 19, no. 2. P. 315– 327. https://doi.org/10.1081/SEI-100102698.
  18. Afandiyeva N. T., Maharramov A. M., Chiragov F. M. Silver(I) preconcentration using m-aminophenol containing sorbent from aqueous solutions // Azerbaijan Chemical Journal. 2021. Issue 1. P. 37–42. https://doi.org/10.32737/0005-2531-2021-1-37-42.
  19. Huang X., Cao X., Wang W., Cao Z.-F. Investigation of removal of Ag(I) from aqueous solution by a novel chelating resin containing acyl and thiourea groups // Journal of Dispersion Science and Technology. 2019. Vol. 40, no. 4. P. 477–486. https://doi.org/10.1080/01932691.2018.1470011.
  20. Stuart B. H. Infrared spectroscopy: Fundamentals and application. Chichester, UK: John Wiley and Sons, 2004. 244 p.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».