Impurity-impurity interaction during the growth of UMG-Si-based mc-Si

Cover Page

Cite item

Full Text

Abstract

This article investigates the relationship between the chemical composition and electrophysical properties of p- and n-type multicrystalline silicon ingots based on metallurgical silicon with a purity of 99.99 at.%. In particular, the role of impurity-impurity interactions in the production of multisilicon by the Bridgman vertical method is evaluated in order to identify approaches to controlling this process effectively. The phase equilibrium calculations in the “silicon–all impurities” and “silicon-impurity-oxygen” systems were carried out based on the Gibbs energy minimization in the Selector software package. The study investigates the rank correlations of the concentrations of various impurities with each other, as well as with the specified electrical resistivity (SER) and the lifetime of nonequilibrium charge carriers (NCC) in the direction of crystal growth. Pair correlations of the element distribution profiles were considered based on the role of the main factor represented by the ratio of individual impurity solubilities in solid or liquid silicon (k0), as well as from the standpoint of direct interaction between two elements. It was found that the k0 value for two individual impurities in silicon does not automatically lead to the pair correlation of their distribution profiles in the ingot. A significant effect on the distribution profiles of impurities in multisilicon with k0→0 has the factor of binding some part of the impurity into such a form that this impurity can be incorporated easily into a growing crystal. Binding may be induced by the interaction of the impurity in the melt with the oxygen background, its segregation at the grain boundaries, and its capture by the crystallization front in the composition of the liquid inclusion. Significant correlations of impurity distribution profiles in the ingot were demonstrated by the pairs whose elements interact without the formation of chemical compounds in the 25–1413 °C temperature range. The conducted phase equilibrium calculations for the “silicon–all impurities” system revealed the possibility of forming the VB2, TiB2, ZrB2, and MgTiO4 solid phases in the melt.

About the authors

R. V. Presnyakov

Vinogradov Institute of Geochemistry SB RAS

Email: ropr81@mail.ru

S. M. Peshcherova

Vinogradov Institute of Geochemistry SB RAS

Email: spescherova@mail.ru

A. G. Chueshova

Vinogradov Institute of Geochemistry SB RAS

Email: trill6521@yandex.ru

V. A. Bychinskii

Vinogradov Institute of Geochemistry SB RAS

Email: val@igc.irk.ru

A. I. Nepomnyashchikh

Vinogradov Institute of Geochemistry SB RAS

Email: ainep@igc.irk.ru

References

  1. Nakajima K., Usami N. Crystal growth of silicon for solar cells. Berlin: Springer, 2009. 269 p.
  2. Osinniy V., Bomholt P., Nylandsted Larsen A., Enebakk E., Søiland A.-K., Tronstad R., et al. Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route // Solar Energy Materials and Solar Cells. 2011. Vol. 95, no. 2. P. 564–572. https://doi.org/10.1016/j.solmat.2010.09.017.
  3. Chen J.-W., Milnes A. G. Energy levels in silicon // Annual Review of Materials Research. 1980. Vol. 10. P. 157–228. https://doi.org/10.1146/annurev.ms.10.080180.001105.
  4. Bathey B. R., Cretella M. C. Solar-grade silicon // Journal of Materials Science. 1982. Vol. 17. P. 3077–3096. https://doi.org/10.1007/BF01203469.
  5. Непомнящих А. И., Пресняков Р. В. Распределение примесей в процессе выращивания мультикристаллического кремния // Неорганические материалы. 2018. Т. 54. N 4. С. 335–339. https://doi.org/10.7868/S0002337X18040012.
  6. Непомнящих А. И., Пресняков Р. В., Антонов П. В., Бердников В. С. Влияние режима выращивания на макроструктуру слитка мультикристаллического кремния // Известия вузов. Прикладная химия и биотехнология. 2012. N 1. С. 28–34.
  7. Басин А. С., Шишкин A. В. Получение кремниевых пластин для солнечной энергетики. Методы и технологии. Новосибирск: Ин-т теплофизики СО РАН, 2000. 195 с.
  8. Chase M. W., Davies C. A., Downey J. R., Frurip D. J., McDonald R. A., Syverud A. N. JANAF thermochemical tables // Journal of Physical and Chemical Reference Data. 1985. Issue 14. P. 927–1856.
  9. Martorano M. A., Ferreira Neto J. B., OliveiraT. S., Tsubaki T. O. Refining of metallurgical silicon by directional solidification // Materials Science and Engineering: B. 2011. Vol. 176, no. 3. P. 217–226. https://doi.org/10.1016/j.mseb.2010.11.010.
  10. Yokokawa H. Tables of thermodynamic functions for inorganic compounds // Journal National Chemical Laboratory for Industry. 1988. Vol. 83. P. 27–121.
  11. Мюллер Г. Выращивание кристаллов из расплава. Конвекция и неоднородности / пер. с англ. А. В. Бунэ. М.: Мир, 1991. 149 с.
  12. Баранник С. В., Канищев В. Н. Особенности начального переходного процесса кристаллизации бинарного расплава // Кристаллография. 2010. Т. 55. N 5. С. 935–939.
  13. Beatty K. M., Jackson K. A. Monte Carlo modeling of silicon crystal growth // Journal of Crystal Growth. 2000. Vol. 211, no. 1-4. P. 13–17. https://doi.org/10.1016/S0022-0248(99)00836-2.
  14. Dalaker H. Thermodynamic computations of the interaction coefficients between boron and phosphorus and common impurity elements in liquid silicon // Computer Methods in Materials Science. 2013. Vol. 13, no. 3. P. 407–411.
  15. Tang K., Øvrelid E. J., Tranell G., Tangstad M. A thermochemical database for the solar cell silicon materials // Materials Transactions. 2009. Vol. 50, no. 8. P. 1978–1984. https://doi.org/10.2320/matertrans.M2009110.
  16. Прокофьева В. К., Соколов Е. Б., Суанов М. Е., Карамов А. Г. Влияние примесей Ti, Zr, Hf на процесс очистки кремния от кислорода // Высокочистые вещества. 1988. N 6. С. 72–74.
  17. Соколов Е. Б., Прокофьева В. К., Белянина Е. В. Кремний, полученный с использованием геттерирования расплава // Электронная промышленность. 1995. Т. 4. N 5. С. 68–69.
  18. Харбеке Г. Поликристаллические полупроводники. Физические свойства и применения / пер. с англ. М.: Мир, 1989. 341 с.
  19. Рейви К. Дефекты и примеси в полупроводниковом кремнии / пер. с англ. М.: Мир, 1984. 475 с.
  20. Красников Г. Я., Зайцев Н. А. Система кремний-диоксид кремния субмикронных СБИС. М.: Техносфера, 2003. 384 с.
  21. Knack S. Copper-related defects in silicon // Materials Science in Semiconductor Processing. 2004. Vol. 7, no. 3. P. 125–141. https://doi.org/10.1016/j.mssp.2004.06.002.
  22. Dubois S., Enjalbert N., Garandet J. P. Effects of the compensation level on the carrier lifetime of crystalline silicon // Applied Physics Letters. 2008. Vol. 93, no. 3. P. 032114. https://doi.org/10.1063/1.2961030.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).