Adsorption of petroleum products by modified and activated adsorbents

Cover Page

Cite item

Full Text

Abstract

This research is aimed at investigating the adsorption of petroleum products from aqueous solutions by adsorbents modified with HCl and those activated by microwave radiation. The research objects were carbon adsorbents: activated coals, such as AD-05-2, IPI-T, KAD-iodine and zeolites of the TransBaikal deposit. The quantitative analysis of waters (standardised test solutions with an initial concentration of petroleum products not exceeding 10 mg/l) was carried out by the fluorimetric method using a Fluorat-02 liquid analyser. The adsorbents were activated in a microwave oven at a wave power of 800 W for 1 min. The modification was carried out according to the following procedure: 10 g of the adsorbents dried to a constant weight at a temperature of 120-150 °C were stirred for 24 h with 200 ml of a 12% HCl solution in water.Next, the suspension was filtered and washed with distilled water until neutral. It was found that the value of adsorption of petroleum products by adsorbents modified with HCl increases by 3.8 times for activated carbon KAD-iodine, 0.5 times for IPI-T, and equals 0.71 mg/g and 0.80 mg/g respectively. Among the studied sorbents, these sorbents have the largest grain size (3-5 mm) and micropore volume (0.28-0.29 cm3/g). It was established that the method of short-term (within 1 min) microwave activation makes it possible to increase the adsorption of petroleum products by: 4.2 times for activated carbon KAD-iodine and 0.6 times for IPI-T in comparison with the original adsorbents. The highest adsorption value of petroleum products corresponds to zeolites and equals 0.99 mg/g. The action of microwave radiation is associated with the dissociation and evaporation of the water bound in the adsorbents and flammable organic substances, which leads to an increase in the porosity of the adsorbent. The application of the microwave activation method is highly promising in comparison with the classic methods of chemical and steam-gas activation. This method simplifies the technological design and reduces the consumption of reagents for the production of effective adsorbents used to extract petroleum products from aqueous solutions, which acquires particular importance in the context of maintaining the environmental safety of water use.

About the authors

A. D. Chugunov

Irkutsk National Research Technical University

Email: chugunovsasha1996@yandex.ru

E. G. Filatova

Irkutsk National Research Technical University

Email: efila@list.ru

References

  1. Kalantarnia M., Khan F., Hawboldt K. Modelling of BP Texas City refinery accident using dynamic risk assessment approach Progress safety and environmental protection // Progress Safety and Environmental Protection. 2010. Vol. 88. Issue 3. P. 191-199. https://doi.org/10.1016/j.psep.2010.01.004
  2. Cheevaporn V., Menasveta P. Water pollution and habitat degradation in the Gulf of Thailand // Marine pollution bulletin. 2003. Vol. 47. Issue 1-6. Р. 43-51. https://doi.org/10.1016/S0025-326X(03)00101-2
  3. Schnaak W., Kuchler T., Kujawa M., Henschel K., Sussenbach D., Donau R. Organic contaminants in sewage sludge and their ecotoxico-logical significance in the agricultural utilization of sewage sludge // Chemosphere. 1997. Vol. 35. Issue 1-2. Р. 5-11. https://doi.org/10.1016/S0045-6535(97)88285-9
  4. Trellu C., Mousset E., Pechaud Y., Huguenot D., van Hullebusch E.D., Esposito G., et al. Removal of hydrophobic organic pollutants from soil wa-shing/flushing solutions: A critical review // Journal of Hazardous Materials. 2016. Vol. 306. P. 149-174. https://doi.org/10.1016/j.jhazmat.2015.12.008
  5. Bazrafshan E., Amirian P., Mahvi A.H., Ansari-Moghaddam A. Application of adsorption process for phenolic compounds removal from aqueous environments: a systematic review // Global Nest Journal. 2016. Vol. 18. Issue 1. P. 146163. https://doi.org/10.30955/gnj.001709
  6. Краснова Т.А., Аникина А.В., Беляева О.В. Очистка сточных вод от анилина с использованием углеродных адсорбентов // Ползуновский вестник. 2011. N 4-2. С. 152-154.
  7. Долгих О.Г., Овчаров С.Н. Использование углеродных адсорбентов на основе растительных отходов для очистки нефтезагрязненных сточных вод // Вестник Северо-Кавказского государственного технического университета. 2010. N 1. С. 6-12.
  8. Мазлова Е.А., Иса Ж.Д. Исследование процессов очистки нефтезагрязненных сточных вод с использованием адсорбентов // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2008. N 12. С. 34-38.
  9. Со Вин Мьинт, Си Тху Аунг, Клушин В.Н. К оценке рациональных условий переработки на углеродные адсорбенты шелухи риса и скорлупы коксовых орехов республики Мьянма // Успехи в химии и химической технологии. 2014. Т. 28. N 5. С. 8-10.
  10. Пат. № 2527221, Российская Федерация. Способ получения активного угля из растительных отходов / В.М. Мухин, Н.Л. Воропаева, В.В. Карпачев, С.А. Харламов, Ю.Я. Спиридонов, В.В. Гурьянов; патентообладатель ОАО «Электростальское НПО “Неорганика”»; заявл. 09.04.2013; опубл. 27.08.2014. Бюл. № 24.
  11. Пат. № 2490207, Российская Федерация. Способ получения активированного угля / И.В. Воскобойников, В.А. Кондратюк, С.А. Константинова, В.М. Щелоков, Э.Ф. Гаврилов, А.О. Шевченко; патентообладатель Министерство промышленности и торговли РФ; заявл. 28.10.2010; опубл. 20.08.2013. Бюл. № 13.
  12. Ali I., Asim M., Khan T.A. Low cost adsorbents for the removal of organic pollutants from wastewater // Journal of Environmental Management. 2012. Vol. 113. P. 170-183. https://doi.org/10.1016/j.jenvman.2012.08.028
  13. Hasan D.B., Wan D.W.M.A., Raman A.A.A. Treatment technologies for petroleum refinery effluents: A review // Process Safety and Environmental Protection. 2011. Vol. 89. Issue 2. Р. 95-105. https://doi.org/10.1016/j.psep.2010.11.003
  14. Zubot W., MacKinnon M.D., Chelme-Ayala P., Smith D.W., El-Din M.G. Petroleum coke adsorption as a water management option for oil sands process-affected water // Science of the Total Environment. 2012. Vol. 427-428. P. 364-372. https://doi.org/10.1016/j.scitotenv.2012.04.024
  15. Shirmardi M., Mahvi A., Hashemzadeh B., Naeimabadi A., Hassani G., Niri M.V. The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes // Korean Journal of Chemical Engineering. 2013. Vol. 30. Issue 8. Р. 1603-1608. https://doi.org/10.1007/s11814-013-0080-1
  16. Hubbe M., Rojas O.J., Fingas M., Gupta B. Cellulosic substrates for removal of pollutants from aqueous systems: a review. 3. Spilled oil and emulsified organic liquid // Bioresources. 2013. Vol. 8. Issue 2. P. 3038-3097. https://doi.org/10.15376/biores.8.2.3038-3097
  17. Anirudhan T.S., Sreekumari S.S., Bringle C.D. Removal of phenols from water and petroleum industry refinery effluents by activated carbon obtained from coconut coir pith // Adsorption. 2009. Vol. 15. Issue 5-6. P. 439-451. https://doi.org/10.1007/s10450-009-9193-6
  18. Текуева К.М., Клушин В.Н., Антипова О.В. Экспериментальная оценка рациональных условий получения активированных углей из фрагментов косточек абрикосов и персиков - отходов пищевых предприятий республики Кабардино-Балкария // Успехи в химии и химической технологии. 2013. Т. 27. N 9 (149). С. 31-34.
  19. Солодкова А.Б., Собгайда Н.А., Шайхиев И.Г. Разработка технологии изготовления и использования адсорбента на основе активного ила для очистки сточных вод // Вестник Казанского технологического университета. 2012. Т. 15. N 20. С. 179-182.
  20. Kravchenko G.V., Domoroshchina E.N., Kuz'micheva G.M., Gaynanova A.A., Amarantov S.V., Pirutko L.V., et al. Zeolite-titanium dioxide nanocomposites: Preparation, characterization, and adsorption properties // Nanotechnologies in Russia. 2016. Vol. 11. Issue 9-10. P. 579-592. https://doi.org/10.1134/S1995078016050098
  21. Шарифканова Г.Н., Сулейменова М.Ш., Ибрашева Р.К. Получение декатионированных и диалюминированных цеолитов // Вестник Алматинского технологического университета. 2015. N 4. С. 105-109.
  22. Коновалов Н.П., Коновалов П.Н., Хайдурова А.А. Микроволновое излучение в технологии сушки угля // Известия вузов. Прикладная химия и биотехнология. 2015. N 1 (12). С. 74-79.
  23. Филатова Е.Г., Соболева В.Г. Извлечение нефти и нефтепродуктов из водных растворов природными адсорбентами // Известия высших учебных заведений. Серия: Химия и химическая технология. 2019. Т. 62. N 6. С. 131-137. https://doi.org/10.6060/ivkkt.20196206.5836
  24. Filatova E.G., Pomazkina O.I., Pozhidaev Y.N. Adsorption of nickel(ii) and copper(ii) ions by modified aluminosilicates // Protections of Metals and Physical and Chemistry of Surfaces. 2017. Vol. 53. Issue 6. P. 999-1004. https://doi.org/10.1134/S2070205117060259

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».