Synthesis and biological activity of N6-mannopyranosyladenines

Cover Page

Cite item

Full Text

Abstract

In this work, potentially bioactive condensation products of adenine with D-mannose and 6-deoxy-L-mannose (L-rhamnose) were synthesized in water and ethanol solutions. According to FTIR spectroscopy and elemental analysis, mono-N6-glycosylated adenines were isolated from water systems in satisfactory yields, while ethanol solutions contained mixtures of N6 and N9-products, as well as complexes of the latter with copper ions. A detailed analysis of the vibrational spectra of N6-glycosyladenines confirmed the structure of carbohydrate fragments in the form of pyranose rings, while some part of the product was obtained in the form of deoxyaminoketosis. N-rhamnosyladenine was formed with a more than double yield because of a higher stability of rhamnose with regard to side reactions. The reflection spectra of model solutions of glycosyladenines, recorded 4 days after preparation, showed no bands characteristic of free adenine in the range of 1250-1110 cm-1, which indicates a sufficient resistance of the synthesized products towards hydrolytic cleavage under experimental conditions. The conducted biotesting of the isolated products on wheat seeds (Triticum aestivum L.) showed an increase in the content of chlorophylls in seedlings for both mannosilade-nines compared to the control. A decrease in the concentration of synthesized products in germination solutions from 0.1 to 0.001% led to an increase in the accumulation of photosynthetic pigments, while this effect was more pronounced for rhamnosyladenine. The latter can be connected with the structural features of car-bohydrate fragments, in particular, the differences in the hydroxylation degree of glucoside fragments. Future research will investigate the mechanisms of transformation and action of N6-substituted adenines.

About the authors

I. S. Cherepanov

Udmurt State University

Email: cherchem@mail.ru

A. A. Kamasheva

Udmurt State University

Email: cherchem@mail.ru

E. I. Kashapova

Udmurt State University

Email: cherchem@mail.ru

References

  1. Mhatre V., Joshi V. Synthesis of new substituted 6-ureidopurines and 6-ureido-9-(2,3,5-triacetyl ribofuranosyl)purines having cytokinin (plant growth promoting) activity // Indonesian Journal of Chemistry. 2002. Vol. 41B. Issue 12. P. 2667-2675. https://doi.org/10.1002/chin.200313195
  2. Mornet R., Theiler J.B., Leonard N.J., Schmitz R.Y., Moore F.H., Skoog F. Active cytokinins. Photoaffinity labeling agents to detect binding // Plant Physiology. 1979. Vol. 64. Issue 4. P. 600-610. https://doi.org/10.1104/pp.64.4.600
  3. Mathlouthi M., Seuvre A.-M., Koenig J.L. FTIR and laser-Raman spectra of adenine and adenosine // Carbohydrate Research. 1984. Vol. 131. Issue 1. P. 1-15. https://doi.org/10.1016/0008-6215(84)85398-7
  4. Maruyama T., Tanaka A., Oda M., Suzuki T., Oritani T. Synthesis and biological activity of new water-soluble cytokinins // Bioscience, Biotechnology, and Biochemistry. 1993. Vol. 57. Issue 5. P. 803-807. https://doi.org/10.1271/bbb.57.803
  5. Hart D.S., Keightley A., Sappington D., Nguyen P.T.M., Chritton C., Seckinger G.R., et al. Stability of adenine-based cytokinines in aqueous solutions // In Vitro Cellular and Developmental Biology - Plant. 2016. Vol. 52. P. 1-9. https://doi.org/10.1007/s11627-015-9734-5
  6. Nashalian O., Yaylayan V. Reactivity of nitrogen atoms in adenine and (Ade)2Cu complexes towards ribose and 2-furanmethanol: formation of adenosine and kinetin // Food Chemistry. 2017. Vol. 215. P. 463469. https://doi.org/10.1016/j.foodchem.2016.08.012
  7. Nam I., Nam H.G., Zare R.N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets // PNAS. 2018. Vol. 115. Issue 1. P. 3640. https://doi.org/10.1073/pnas.1718559115
  8. Knerr T., Osch S., Severin T. Reaction of guanosine, 2'-deoxyguanosine and guanosine-5'-monophosphate with glucose // Carbohydrate Research. 1994. Vol. 256. Issue 1. P. 177-183. http://doi.org/10.1016/0008-6215(94)84236-1
  9. Larralde R., Robertson M.P., Miller S.L. Rates of decomposition of ribose and other sugars: Implication of chemical evolution // PNAS. 1995. Vol. 92. Issue 18. P. 8158-8160. https://doi.org/10.1073/pnas.92.18.8158
  10. Sharma S., Uttam R., Singh P., Uttam K. Detection of vibrational spectroscopic biomarkers of the effect of gold nanoparticles of wheat seedlings using attenuated total reflectance Fourier transformed infrared spectroscopy // Analytical Letters. 2018. Vol. 51. Issue 14. P. 2271-2294. https://doi.org/10.1080/00032719.2017.1423077
  11. Черепанов И.С. Синтез и изучение рострегулирующей активности N-карбоксифенил-L-рамнозиламинов // Вестник технологического университета. 2020. Т. 23. N 2. C. 5-8.
  12. Montesinos V.J., Terrogn A., Fiol J.J., Moreno V., Caubet A. Synthesis and characterization of adenine histidine ternary complexes // Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 1993. Vol. 23. Issue 6. P. 937-947. https://doi.org/10.1080/15533179308016873
  13. Fujita T., Sakaguchi T. Coordination and protonation sites of metal complexes containing adenine. Studies by infrared spectra // Chemical and Pharmaceutical Bulletin. 1977. Vol. 25. Issue 9. P. 2419-2422. https://doi.org/10.1248/cpb.25.2419
  14. Masoud M., El-Merghani A., Abd El-Kaway M. Structure and physico-chemical properties of biologically active purine complexes // Synthesis and Reactivity in Inorganic, Metal-organic and Nanometal Chemistry. 2009. Vol. 39. P. 535-553. https://doi.org/10.1080/15533170903327844
  15. Hamada Y.Z., Greene J.T., Shields V., Prat-cher M., Gardiner S., Waddell E., et al. Spectroscopic and potentiometric studies of the interaction of adenine with trivalent metal ions // Journal of Coordination Chemistry. 2010. Vol. 63. Issue 2. P. 284-295. https://doi.org/10.1080/00958970903377279
  16. Malek K., Podstawka E., Milecki J., Schroeder G., Proniewicz L. Structural features of the adenosines conjugate in means of vibrational spectroscopy and DFT // Biophysical Chemistry. 2009. Vol. 142. Issue 1-3. P. 17-26. https://doi.org/10.1016/j.bpc.2009.02.007
  17. Zhbankov R.G., Sivchik V.V., Kolosova T.E. Vibrational spectra of monosaccharides which differ in the configuration of the CO(CH) groups // Journal of Applied Spectroscopy. 1980. Vol. 32. Issue 5. P. 472-477. https://doi.org/10.1007/BF00612923
  18. Bailey L.E., Hernanz A., Navarro R., The-ophanides T. Normal coordinate analysis and vibrational spectra of 9-e-D-arabinofuranosyladenine hydrochloride (Ara-A.HCl) // European Biophysics Journal. 1996. Vol. 24. Issue 3. P. 149-158. https://doi.org/10.1007/BF00180272
  19. Suarez-Marina I., Abul-Haija Y., Turk-Macleod R., Gromski P.S., Cooper G.J.T., Olive A.O., et al. Integrated synthesis of nucleotide and nucleosides influenced by amino acids // Communication Chemistry. 2019. Vol. 2. Issue 28. 8 p. https://doi.org/10.1038/s42004-019-0130-7
  20. Черепанов И.С. Образование вторичного продукта амадори в системе D-манноза - п-то-луидин // Южно-сибирский научный вестник. 2019. Т. 26. N 2. С. 23-27. https://doi.org/10.25699/SSSB.2019.2(26).32516
  21. Abou Rayya M.S., Thanaa Sh.V., Naliba E.K. Photosynthetic pigments and fruit quality of Manzanillo olive as affected by 6-benzyladenine and studied the chemical constituents in leaves using Fourier transform infrared spectroscopy technique // International Journal of ChemTech Research. 2015. Vol. 8. Issue 6. P. 514-522.
  22. Piotrowska A., Czerpak R., Adamowicz J., Biedrizcka A., Potocka A. Comparison of stimulatory effect of cytokinins adenine and urea derivatives on the level of some components in Wolffia Arrhiza (L.) Wimm (Lemnaceae) // Acta Societatis Botanicorum Poloniae. 2005. Vol. 74. Issue 2. P. 111-118. https://doi.org/10.5586/asbp.2005.015

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).