Influence of humic acids in lowland peat on the remediation properties of wheat plants against heavy metal contamination
- Authors: Kirdey T.A.1
-
Affiliations:
- Ivanovo State Agricultural Academy by D.K. Belyaev
- Issue: Vol 11, No 2 (2021)
- Pages: 228-235
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/300916
- DOI: https://doi.org/10.21285/2227-2925-2021-11-2-228-235
- ID: 300916
Cite item
Full Text
Abstract
Phytoremediation is a promising technology for removing heavy metals from soil and water. Despite the pronounced increase in heavy metal accumulation by cultivated plants under the influence of naturally occurring complexing agents, such as humic acids, their efficiency in phytoremediation has been poorly studied. In this regard, the aim of this work is to elucidate the effect of peat humic acid formulations on the remediation potential of wheat plants (Triticum aestivum L.) against heavy metal contamination. The influence of polymetallic pollution on the remediation properties of wheat was studied in model vegetation experiments using a culture solution. Plants were grown in a Hoagland nutrient solution. A complex exposure to heavy metals was simulated using 10 pmol/L CdSO4, 25 and 50 pmol/L CuSO4, 500 and 1000 pmol/L Pb(NO3)2 in various combinations with or without the addition of a peat humic acid formulation (0.005%).The phytoremediation efficiency of the humic acid formulation was determined by the removal of heavy metals during the heading stage of wheat growth. The research results showed that the phytoremediation efficiency of the humic acid formulation is defined by both an increase in the absorption of heavy metals and a decrease in their toxic action on the plants. In the case of mixed contamination of the solution with highly toxic heavy metals, the samples with humic acids showed a 1.2-2.5-fold increase in the accumulation of copper and cadmium by wheat plants. The data demonstrates the possibility of using the formulation of peat humic acids in phytoremediation technologies as an effector of heavy metal phytoextraction.
Keywords
About the authors
T. A. Kirdey
Ivanovo State Agricultural Academy by D.K. Belyaev
Email: t.a.kirdey@mail.ru
References
- Lyanguzova I.V. Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes // Russian Journal of Ecology. 2017. Vol. 48. Issue 4. P. 311-320. https: //doi.org/10.1134/S1067413617040117
- Гиниятуллин Р.Х., Бактыбаева З.Б. Особенности накопления Cd и Ni лиственницей Сукачева (Larix sukaczewii Dyl.) в условиях техногенеза // Вестник Томского государственного университета. Биология. 2020. N 51. C. 141-161. https://doi.org/10.17223/19988591/51/8
- Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях / пер. с англ. Д.В. Гричука, Е.П. Янина; под ред. Ю.Е. Саета. М.: Мир, 1989. 439 с.
- Prasad M.N.V. Phytoremediation of metal-polluted ecosystems: hype for commercialization // Russian Journal of Plant Physiology. 2003. Vol. 50. Issue 5. Р. 686-701. https://doi.org/10.1023/A:1025604627496
- Baker A.J.M. Accumulators and excluders -strategies in the response of plants to heavy metals // Journal of Plant Nutrition. 1981. Vol. 3. Issue 1-4. P. 643-654. https://doi.org/10.1080/01904168109362867
- Pilon-Smits E. Phytoremediation // Annual Review of Plant Biology. 2005. Vol. 56. P. 15-39. https://doi.org/10.1146/annurev.arplant.56.032604.144214
- Prieto M.J., Acevedo SOA, Prieto G.F., Nallely T.G. Phytoremediation of soils contaminated with heavy metals // Biodiversity International Journal. 2018. Vol. 2. Issue 4. P. 362-376. https://doi.org/10.15406/bij.2018.02.00088
- Yan A., Wang Y., Tan S.N., Mohd Yusof M.L., Ghosh S., Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land // Frontiers in Plant Science. 2020. Vol. 11. Р. 359. https://doi.org/10.3389/fpls.2020.00359
- Evangelou M.W.H., Robinson B.H., Gunthardt-Goerg M.S., Schulin R. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production // International Journal of Phytoremediation. 2012. Vol. 15. Issue 1. P. 77-90. https://doi.org/10.1080/15226514.2012.670317
- Salt D.E., Blaylock M., Kumar N.P., Dushenkov V., Ensley B.D., Chet I., Raskin I. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants // Biotechnology. 1995. Vol. 13. Issue 5. P. 468-475. https://doi.org/10.1038/nbt0595-468
- Vamerali T., Bandiera M., Mosca G. Field crops for phytoremediation of metal-contaminated land. A review // Environmental Chemistry Letters. 2010. Vol. 8. Issue 1. P. 1-17. https://doi.org/10.1007/s10311-009-0268-0
- Lee M., Yang M. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater // Journal of Hazardous Materials. 2010. Vol. 173. Issue 1-3. P. 589-596. https://doi.org/10.1016/j.jhazmat.2009.08.127
- Jensen J.K., Holm P.E., Nejrup J., Borggaard O.K. A laboratory assessment of potentials and limitations of using EDTA, rhamnolipids, and compost-derived humic substances (HS) in enhanced phytoextraction of copper and zinc polluted calcareous soils // Soil and Sediment Contamination: an International Journal. 2011. Vol. 20. Issue 7. P. 777-789. https://doi.org/10.1080/15320383.2011.609198
- Halim M., Conte P., Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances // Chemosphere. 2003. Vol. 52. Issue 1. P. 265-275. https://doi.org/10.1016/S0045-6535(03)00185-1
- Evangelou M.W.H., Daghan H., Schaeffer A. The influence of humic acids on the phytoextraction of cadmium from soil // Chemosphere. 2004. Vol. 57. Issue 3. P. 207-213. https://doi.org/10.1016/j.chemosphere.2004.06.017
- Кирдей Т.А. Влияние гумата на фиторемедиационные свойства пшеницы при возрастающих концентрациях нитрата свинца // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. N 4. С. 110-115. https://doi.org/10.21285/2227-2925-2017-7-4-110-115
- Чураков А.А. Запасы торфа в России // Лесной вестник. 2003. N 3. С. 22-25.
- Пат. № 2310633, Российская Федерация. Способ получения жидких торфяных гуматов / Ю.А. Калинников, И.Ю. Вашурина, Т.А. Кирдей; патентообладатель ООО «Научно-производственная фирма “Недра”»; заявл. 15.06.2006; опубл. 20.11.2007. Бюл. № 32. 4 с.
- Hoaglond DR, Arnon DE. The water-culture method for growing plants without soil. California Agriculture Experimental Station. 1950. Available from: https://ia800306.us.archive.org/6/items/watercultureme3450hoag/watercultureme3450hoag.pdf.
Supplementary files

