IR spectroscopy and X-ray diffraction analysis of industrial polyvinyl chloride suspension

Cover Page

Cite item

Full Text

Abstract

In terms of the contemporary plastic industry, world production of polyvinyl chloride is second only to polyolefins. Recyclable by almost all known methods, polyvinyl chloride offers high strength, good insulating properties, as well as resistance to acids, oxidising agents and solvents. At the same time, the ability to process polyvinyl chloride into products is limited by its lack of stability at high melt viscosity temperatures, since hydrogen chloride released during its heating catalyses further process of polymer decomposition. Thus, due to the softening temperature of polyvinyl chloride being higher than its decomposition temperature, it cannot be processed in its pure form. Consequently, functional polyvinyl chloride-based materials tend to be composites. By varying the composition of mixtures, plastic masses characterised by either very soft (plastic compounds) or hard (vinyl plastics) structures can be obtained. The properties of polyvinyl chloride-based polymer products are largely determined by the structure and morphology of the polymer. In the present work, the properties of industrial suspension polyvinyl chloride (Sayanskkhimplast JSC, Irkutsk Oblast) were studied in detail for the first time. The molecular weight of the polymer determined by the viscometric method was 1.0 · 106. Thermogravimetric analysis showed that polyvinyl chloride mass loss started to occur at 160 °C. Following the complete IR band assignment of the polymer, the polyvinyl chloride under study was established to contain no foreign substances (impurities of stabilisers, emulsifiers and additives). The diffraction curve of the polymer was established to be qualitatively similar to equivalent partially crystalline polymers. Two amorphous halos were detected at 2θ of 24° 30′ and 39° 30′ below a group of crystalline peaks. The crystallinity degree of polyvinyl chloride was determined and mechanisms for the formation of its regular and irregular structure were proposed.

About the authors

V. V. Bayandin

Irkutsk National Research Technical University

Email: bayandinvv@yandex.ru

N. S. Shaglaeva

Irkutsk National Research Technical University

Email: ShaglaevaNS@yandex.ru

T. A. Podgorbunskaya

Irkutsk National Research Technical University

Email: tpodgor@istu.edu

N. D. Lukyanov

Irkutsk National Research Technical University

Email: lukyanovnd@istu.edu

N. V. Minaev

Irkutsk National Research Technical University

Email: minaev@istu.edu

С. С. Makarov

Irkutsk National Research Technical University

Email: makarov@istu.edu

References

  1. Braun D. Poly(vinyl chloride) on the way from the 19th century to the 21st century // Journal of Polymer Science: Part A: Polymer Chemisrty. 2004. Vol. 42. Issue 3. P. 578–586. https://doi.org/10.1002/pola.10906
  2. Килячков А.А. Производство ПВХ в России: состояние и перспективы // Пластикс. 2014. N 5 (134). С. 42–47.
  3. Wypych G. PVC Degradation and Stabilisation. 3rd Edition. Toronto: СhemTec Publishing, 2015. 441 p.
  4. Шаглаева Н.С., Султангареев Р.Г., Орхокова Е.А., Прозорова Г.Ф., Дмитриева Г.В., Дамбинова А.С.. Протонпроводящие мембраны на основе модифицированного поливинилхлорида // Мембраны и мембранные технологии. 2011. Т. 1. N 3. С. 213–219. https://dol.org/10.1134/S0965544111080093
  5. Choi J.K., Kim Y.W., Koh J.H., Kim J.H. Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes // Polymers for Advanced Technologies. 2008. Vol. 19. Issue 7. P. 915–921. https://dol.org/10.1002/pat1060
  6. Krongauz V.V., Lee Y., Bourassa A. Kinetics of thermal degradation of poly(vinyl chloride) // Journal of Thermal Analysis and Calorimetry. 2011. Vol. 106. P. 139–149. https://doi.org/10.1007/s10973-011-1703-6
  7. Liu J., Lv Y., Luo Z., Wang H., Wei Z. Molecular chain model construction, thermo-stability, and thermo-oxidative degradation mechanism of poly(vinyl chloride) // Royal Society of Chemistry Advances. 2016. Vol. 6. Issue 39. P. 31898–31905. https://doi.org/10.1039/C6RA02354A
  8. Шаглаева Н.С., Султангареев Р.Г., Забанова Е.А., Лебедева О.В., Трофимова К.С. Нуклеофильное замещение атомов хлора в поливинилхлориде // Журнал прикладной химии. 2008. Т. 81. Вып. 1. С. 136–139. https://dol.org/10.1007/s11167-008-1029-8
  9. Szarka G., Iván B. Thermal properties, degradation and stability of poly(vinyl chloride) predegraded thermooxidatively in the presence of dioctyl phthalate plasticizer // Journal of Macromolecular Science: Part A: Pure and Applied Chemistry. 2013. Vol. 50. Issue 2. P. 208–214. https://doi.org/10.1080/10601325.2013.742804
  10. Лакеев С.Н., Майданова И.О., Муллахметов Р.Ф., Давыдова О.В. Cложноэфирные пластификаторы поливинилхлорида (обзор) // Журнал прикладной химии. 2016. Т. 89. N 1. С. 3–18.
  11. Navarro R., Perrino M.P., Tardaios M.G., Reinecke H. Phthalate Plasticizers Covalently Bound to PVC: Plasticization with Suppressed Migration // Macromolecules. 2010. Vol. 43. P. 2377–2381. https://doi.org/10.1021/ma902740t
  12. McCoy C.P., Irwin N.J., Hardy J.G., Kennedy S.J., Donnelly L., Cowley J.F., et al. Systematic optimization of poly(vinyl chloride) surface modification with an aromatic thiol // European Polymer Journal. 2017. Vol. 97. P. 40–48. https://doi.org/10.1016/j.eurpolymj.2017.09.030
  13. Рафиков С.Р., Павлова С.А., Твердохлебова И.И. Методы определения молекулярных весов и полидисперсности высокомолекулярных соединений. М.: Изд-во АН СССР, 1963. 335 с.
  14. Брандон Д., Каплан У. Микроструктура материалов. Методы исследования и контроля. М.: Техносфера, 2004. 384 с.
  15. Goldstein M., Stephenson D., Maddams W.F. The far infra-red spectrum of poly(vinyl chloride) // Polymer. 1983. Vol. 24. Issue 7. P. 823–826. https://doi.org/10.1016/0032-3861(83)90197-0
  16. Kowalonek J. Surface studies of UV-irradiated poly(vinyl chloride)/poly(methyl methacrylate) blends // Polymer Degradation and Stability. 2016. Vol. 133. P. 367–377. https://doi.org/10.1016/j.polymdegradstab.2016.09.016
  17. Moore W.H., Krimm S. The vibrational spectrum of crystalline syndiotactic. Poly(vinyl chloride) // Macromolecular Chemistry and Physics. 1975. Vol. 1. Issue S19751 P. 491–506. https://doi.org/10.1002/macp.1975.020011975134
  18. Лебедев В.П., Окладнов Н.А., Минскер К.С., Штаркман Б.Н. Рентгенографическое исследование поливинилхлорида // Высокомолекулярные соединения. 1965. Т. 7. N 4. С. 655–670.
  19. Получение и свойства поливинилхлорида / под ред. Е.Н. Зильбермана. М.: Химия, 1968. 432 с.
  20. Глазковский Ю.В., Завьялов А.Н., Бакарджиев Н.М., Новак И.И. Исследование методом ИК-спектроскопии изменения упорядоченности структуры аморфизованного поливинилхлорида // Высокомолекулярные соединения. 1970. Т. XII (A). N 12. С. 2697–2701.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).