Effect of the autohydrolytic treatment of Miscanthus sacchariflorus Andersson on the yield of the reducing substances during the subsequent fermentolysis
- Authors: Pavlov I.N.1
-
Affiliations:
- Institute for Problems of Chemical and Energetic Technologies SB RAS
- Issue: Vol 10, No 2 (2020)
- Pages: 303-313
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/299685
- DOI: https://doi.org/10.21285/2227-2925-2020-10-2-303-313
- ID: 299685
Cite item
Full Text
Abstract
The effect of the autohydrolytic treatment of Miscanthus sacchariflorus Andersson on the yield of the reducing substances during the subsequent fermentolysis has been determined. It was established that a change in the conditions of the auto-hydrolytic treatment of Miscanthus sacchariflorus Andersson induces a formation of solid fractions containing cellulose, lignin, hemicellulose and mineral substances, the ratio of which depends on the severity factor, i.e. temperature and processing time. It was shown that at the severity factor of 5.67, almost complete hydrolysis of hemicellulose occurs, however, there is an increase in the lignin content in the solid fraction (up to 46.0 %) relative to the lignin content in the feedstock (20.8 %), which is due to lignin condensation with a consequent formation of pseudo lignin. The highest content of cellulose in the solid phase is observed as a result of hydrolytic processing of raw materials with a severity factor of 4.17 to 4.39, a temperature of 160 оС and a processing time of 25 min. At an increased temperature, an increase in the acidity of the medium catalyzes the hydrolysis of cellulose and reduces its content in the solid fraction to 60 % at a severity factor of 5.67. During the auto-hydrolytic treatment of Miscanthus sacchariflorus Andersson, an increase in the ash content in the solid fraction is observed. The solid fractions obtained after treatment with Miscanthus sacchariflorus Andersson were used as a substrate and were subjected to enzymatic hydrolysis with the enzyme preparations “Cellolux-A” and “BrewZime BGX” at an initial substrate concentration of 33 g/l. The increase in the yield of reducing substances has shown a steady increase with the removal of hemicelluloses and reached its maximum value (45.1 %) with an increase in the treatment severity factor to 4.48. The availability of the cellulose surface for the action of enzymes has decreased with an increase in the stiffness factor beyond a value of 4.48 due to the accumulation of lignin in the solid phase, as evidenced by a decrease in the yield of reducing substances in the enzyme to 31.8 %.
About the authors
I. N. Pavlov
Institute for Problems of Chemical and Energetic Technologies SB RAS
Email: pawlow-in@mail.ru
References
- Гладышева Е.К., Голубев Д.С., Скиба Е.А. Исследование биосинтеза бактериальной наноцеллюлозы продуцентом Мedusomyces gisevii Sa-12 на ферментативном гидролизате продукта щелочной делигнификации мискантуса // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 2. С. 260–269. https://doi.org/10.21285/2227-2925-2019-9-2-260-269
- Kashcheyeva E.I., Gismatulina Y.A., Budaeva V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis // Polymers. 2019. Vol. 11. Issue 10. P. 1645. https://doi.org/10.3390/polym11101645
- Байбакова О.В., Влияние предварительной обработки энергетической культуры мискантуса на выход биоэтанола // Известия вузов. Прикладная химия и биотехнология. 2018. Т. 8. N 3. С. 79–84. https://doi.org/10.21285/2227-2925-2018-8-3-79-84
- Mahmood H., Moniruzzaman M., Iqbal T., Khan M.J. Recent advances in the pretreatment of lignocellulosic biomass for biofuels and valueadded products // Current Opinion in Green and Sustainable Chemistry. 2019. Vol. 20. P. 18–24. https://doi.org/10.1016/j.cogsc.2019.08.001
- Bychkov A.L., Podgorbunskikh E.M., Ryabchikova E.I., Lomovsky O.I. The role of mechanical action in the process of the thermome-chanical isolation of lignin // Cellulose. 2018. Vol. 25. Issue 1. P. 1–5. https://doi.org/10.1007/s10570-017-1536-y
- Jiang K., Li L., Long L., Ding S. Comprehensive evaluation of combining hydrothermal pretreatment (autohydrolysis) with enzymatic hydrolysis for efficient release of monosaccharides and ferulic acid from corn bran // Industrial Crops and Products. 2018. Vol. 113. P. 348–357. https://doi.org/10.1016/j.indcrop.2018.01.047
- Jiang W., Chang S., Qu Y., Zhang Z., Xu J. Changes on structural properties of biomass pretreated by combined deacetylation with liquid hot water and its effect on enzymatic hydrolysis // Bioresource Technology. 2016. Vol. 220. P. 448–456. https://doi.org/10.1016/j.biortech.2016.08.087
- Gu B.-J., Dhumal G.S., Wolcott M.P., Ganjyal G.M. Disruption of lignocellulosic biomass along the length of the screws with different screw elements in a twin-screw extruder // Bioresource Technology. 2019. Vol. 275, P. 266–271. https://doi.org/10.1016/j.biortech.2018.12.033
- Lyu H., Zhou J., Geng Z., Lyu C., Li Y. Two-stage processing of liquid hot water pretreatment for recovering C5 and C6 sugars from cassava straw // Process Biochemistry. 2018. Vol. 75. P. 202–211. https://doi.org/10.1016/j.procbio.2018.10.003
- Cardona E., Llano B., Penuela M., Juan Pena J., Rios L.A. Liquid-hot-water pretreatment of palm-oil residues for ethanol production: An economic approach to the selection of the processing conditions // Energy. 2018. Vol. 160. P. 441–451. https://doi.org/10.1016/j.energy.2018.07.045
- Da Costa R.M.F., Pattathil S., Avci U., Winters A., Hahn M.G., Bosch M. Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass // Biotechnology for Biofuels. 2019. Vol. 12. Issue 1. Article:85. 18 p. https://doi.org/10.1186/s13068-019-1426-7
- Pavlov I.N., Denisova M.N., Makarova E.I., Budaeva V.V., Sakovich G.V. Versatile thermobaric setup and production of hydrotropic cellulose therein // Cellulose Chemistry and Technology. 2015. Vol. 49. Issue 9-10. P. 847–852
- Batista G.O., Souza R.B.A., Pratto B., Dos Santos-Rocha M.S.R, Cruz A.J.G. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw // Bioresource Technology. 2019. Vol. 275. P. 321–327. https://doi.org/10.1016/j.biortech.2018.12.073
- Sabanci K., Buyukkileci A.O. Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues // Bioresource Technology. 2018. Vol. 261. P. 158–165. https://doi.org/10.1016/j.biortech.2018.03.136
- Кащеева Е.И., Будаева В.В. Определение реакционной способности к ферментативному гидролизу целлюлозосодержащих субстратов // Заводская лаборатория. Диагностика материалов. 2018. Т. 84. N 10. С. 5–11. https://doi.org/10.26896/1028-6861-2018-84-10-5-11
- Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar // Analytical Chemistry. 1959. Vol. 31. N 3. P. 426–428. https://doi.org/10.1021/ac60147a030
- Michelin M., Teixeira J.A. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof // Bioresource Technology. 2016. Vol. 216. P. 862–869. https://doi.org/10.1016/j.biortech.2016.06.018
- Moniz P., Pereira H., Duarte L.C., Carvalheiro F. Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw // Industrial Crops and Products. 2014. Vol. 62. P. 460–465. https://doi.org/10.1016/j.indcrop.2014.09.020
- Liu L., Liu W., Hou Q., Chen J., Xu N. Understanding of pH value and its effect on autohydrolysis pretreatment prior to poplar chemithermomechanical pulping // Bioresource Technology. 2015. Vol. 196. P. 662–667. https://doi.org/10.1016/j.biortech.2015.08.034
- Podgorbunskikh E.M., Ryabchikova E.I., Bychkov A.L., Lomovskii O.I. Changes in structure of cell wall polymers in thermomechanical treatment of highly lignified plant feedstock // Doklady Physical Chemistry. 2017. Vol. 473. Issue 1. P. 49–51. https://doi.org/10.1134/S0012501617030046
- Ko J.K., Kim Y., Ximenes E., Ladisch M.R. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose // Biotechnology and Bioengineering. 2015. Vol. 112. Issue 2. P. 252–262. https://doi.org/10.1002/bit.25349
- Gan S., Zakaria S., Chen R.S., Chia C.H., Padzil F.N.M., Moosavi S. Autohydrolysis processing as an alternative to enhance cellulose solubility and preparation of its regenerated biobased materials // Materials Chemistry and Physics. 2017. Vol. 192. P. 181–189. https://doi.org/10.1016/j.matchemphys.2017.01.012
- Zhu R., Yadama V. Effects of hot water extraction pretreatment on physicochemical changes of Douglas fir // Biomass and Bioenergy. 2016. Vol. 90. P. 78–89. https://doi.org/10.1016/j.biombioe.2016.03.028
- Chena T.-Y., Wena J.-L., Wanga B., Wanga H.-M., Liub C.-F., Suna R.-C. Assessment of integrated process based on autohydrolysis and robust delignification process for enzymatic saccharification of bamboo // Bioresource Technology. 2017. Vol. 244. P. 717–725. https://doi.org/10.1016/j.biortech.2017.08.032
Supplementary files

