Sorption action of silicon-containing samples against bacteria

封面

如何引用文章

全文:

详细

Silicon-containing amorphous substances, such as silicon dioxide (silica) and aluminosilicates, have a wide range of applications due to their porosity, chemical inertness and thermal stability. These materials are conventionally produced from quartz, diatomite and silicates of various compositions. However, the existing methods for isolating pure compounds are quite expensive and energy intensive. Renewable biological waste containing large amounts of silicon, e.g. rice husks and straw (Oryza sativa), can be used as an alternative raw material. The main advantages of such a material consist in its low cost, almost constant chemical composition, as well as simple and relatively inexpensive processing methods. Due to the high content of silicon dioxide in rice husks and straw, their recycling products are effective adsorbents of many types of pollutants from aqueous solutions. Although some publications describe interaction processes between microorganisms and highly-dispersive synthetic materials based on silicon dioxide of mineral origin, there is a lack of information on the biogenic forms of silica and aluminosilicates obtained from rice production wastes. In previous studies, we established the ability of a number of silicon-containing samples isolated from rice production wastes, depending on the raw material (husk or straw) and production conditions, to bind different bacteria, e.g. Escherichia coli, Streptococcus aureus, Candida albicans, Pseudomonas aeruginosa and Bacillus subtilis. In this work, we studied the sorption action of amorphous silicon dioxide and aluminosilicates obtained from rice husks and straw against the test cultures of Escherichia coli and Bacillus subtilis. The reference materials were such commercial products as expanded vermiculite (natural aluminosilicate) and the ‘White Coal’ sorbent containing approximately equal proportions of silica and microcrystalline cellulose. The obtained results were discussed in the context of the physicochemical parameters of the studied substances, including their chemical composition, IR absorption spectra, characteristics of the acid-base properties of the surface assessed by the methods of pH-metry and adsorption of acid-base indicators (Hammett's method). It was established that the sorption capacity of a sorbent in relation to bacteria depends on the initial material, its composition and production method.

作者简介

U. Kharchenko

Institute of Chemistry, FEB RAS

Email: ulyana-kchar@mail.ru

O. Arefieva

Institute of Chemistry, FEB RAS

Email: arefeva.od@dvfu.ru

A. Panasenko

Institute of Chemistry, FEB RAS

Email: panasenko@ich.dvo.ru

L. Zemnukhova

Institute of Chemistry, FEB RAS

Email: zemnukhova@ich.dvo.ru

I. Beleneva

A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS

Email: beleneva.vl@mail.ru

参考

  1. Singh N.B., Nagpal G., Agrawal S., Rachna. Water purification by using adsorbents: A review // Environmental Technology and Innovation. 2018. Vol. 11. P. 187-240. https://doi.org/10.1016/j.eti.2018.05.006
  2. Bhatnagar A., Sillanpaa M. Utilization of agroindustrial and municipal waste materials as potential adsorbents for water treatment - A review // Chemical Engineering Journal. 2010. Vol. 157. Issue 2-3. P. 277-296. https://doi.org/10.1016/j.cej.2010.01.007
  3. De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of lowcost sorbents for wastewater treatment: A Review // Sustainable Materials and Technologies. 2016. Vol. 9. P. 10-40. https://doi.org/10.1016/j.susmat.2016.06.002
  4. Khatsrinov A.I., Mezhevich Z.V., Kornilov A.V., Lygina T.Z. Inorganic sorbents based on modified natural calcium- and iron-containing aluminosilicates // Inorganic Materials. 2019. Vol. 55. Issue 11. P. 1138-1145. https://doi.org/10.1134/S0020168519110062
  5. Fonseca D., Barba F., Callejas P., Recio P. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials // Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2012. Vol. 51. Issue 5. P. 261-268. https://doi.org/10.3989/cyv.372012
  6. Li X., Li B., Xu J., Wang Q., Pang X., Gao X., et al. Synthesis and characterization of Ln-ZSM-5/MCM-41 (Ln = La, Ce) by using kaolin as raw material // Applied Clay Science. 2010. Vol. 50. Issue 1. P. 81-86. https://doi.org/10.1016/j.clay.2010.07.006
  7. Ahmaruzzaman M., Gupta V.K. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment // Industrial and Engineering Chemistry Research. 2011. Vol. 50. Issue 24. P. 13589-13613. https://doi.org/10.1021/ie201477c
  8. Della V.P., Kuhn I., Hotza D. Rice husk ash as an alternate source for active silica production // Materials Letters. 2002. Vol. 57. Issue 4. P. 818-821. https://doi.org/10.1016/S0167-577X(02)00879-0
  9. Chuah T.G., Jumasiah A., Azni I., Katayon S., Choong S.Y.T. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview // Desalination. 2005. Vol. 175. Issue 3. P. 305-316. https://doi.org/10.1016/j.desal.2004.10.014
  10. Kim M., Yoon S.H., Choi E., Gil B. Comparison of the adsorbent performance between rice hull ash and rice hull silica gel according to their structural differences // LWT - Food Science and Technology. 2008. Vol. 41. Issue 4. P. 701-706. https://doi.org/10.1016/j.lwt.2007.04.006
  11. Dai Y., Sun Q., Wang W., Lu L., Liu M., Li J., et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review // Chemosphere. 2018. Vol. 211. P. 235-253. https://doi.org/10.1016/j.chemosphere.2018.06.179
  12. Zemnukhova L.A., Fedorishcheva G.A., Egorov A.G., Sergienko V.I. Recovery conditions, impurity composition, and characteristics of amorphous silicon dioxide from wastes formed in rice production // Russian Journal of Applied Chemistry. 2005. Vol. 78. Issue 2. P. 319-323. https://doi.org/10.1007/s11167-005-0283-2
  13. Zemnukhova L.A., Panasenko A.E., Fe-dorishcheva G.A., Maiorov V.Y., Tsoi E.A., Shapkin N.P., et al. Composition and structure of amorphous silica produced from rice husk and straw // Inorganic Materials. 2014. Vol. 50. Issue 1. P. 75-81. https://doi.org/10.1134/S0020168514010208
  14. Панасенко А.Е., Борисова П.Д., Арефьева О.Д., Земнухова Л.А. Алюмосиликаты из соломы риса: получение и сорбционные свойства // Химия растительного сырья. 2019. N 3. С. 291-298. https://doi.org/10.14258/jcprm.2019034278
  15. Zemnukhova L., Kharchenko U., Beleneva I. Biomass derived silica containing products for removal of microorganisms from water // International Journal of Environmental Science and Technology. 2014. Issue 12. P. 1495-1502. https://doi.org/10.10 07/s13762-014-0529-8
  16. Медицинская химия и клиническое применение диоксида кремния / под ред. А.А. Чуйко. Киев: Наукова думка, 2003. 415 с.
  17. Лейкин Ю.А., Черкасова Т.А., Смагина Н.А. Вермикулитовый сорбент для очистки воды от нефтяных углеводородов // Сорбционные и хроматографические процессы. 2009. Т. 9. N 1. С. 104-117.
  18. Хальченко И.Г., Шапкин Н.П., Свистунова И.В., Токарь Э.А. Химическая модификация вермикулита и исследование его физико-химических свойств // Бутлеровские сообщения. 2015. Т. 41. N 1. С. 74-82.
  19. Конорев М.Р. Клиническая фармакология энтеросорбентов нового поколения // Вестник фармации. 2013. N 4 (62). С. 79-85.
  20. Земнухова Л.А., Панасенко А.Е., Полякова Н.В., Курявый В.Г., Арефьева О.Д., Земнухов В.А. Вермикулит Кокшаровского месторождения (Приморский край) и его свойства // Химия в интересах устойчивого развития. 2018. Т. 26. N 1. С. 19-26. https://doi.org/10.15372/KhUR20180104
  21. Shapkin N.P., Khal'chenko I.G., Panasenko A.E., Leont'ev L.B., Razov V.I. Hybrid composite materials based on natural layered silicates // Inorganic Materials. 2018. Vol. 54. Issue 9. P. 965-969. https://doi.org/10.1134/S0020168518090145
  22. Arefieva O.D., Pirogovskaya P.D., Panasenko A.E., Zemnukhova L.A. Acid-base properties of aluminosilicates from rice husk and straw // SN Applied Sciences. 2020. Vol. 2. Art. 894. https://doi.org/10.1007/s42452-020-2732-1
  23. Zemnukhova L.A., Babushkina T.A., Klimova T.P., Ziatdinov A.M., Kholomeiydik A.N. Structural features of amorphous silica from plants // Applied Magnetic Resonance. 2012. Vol. 42. Issue 4. P. 577584. https://doi.org/10.1007/s00723-012-0332-y

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».