Acid-base properties of imidazo[2,1-b] tiazole and tiazolo[3,2- а] benzimidazole derivatives

Cover Page

Cite item

Full Text

Abstract

For over 30 years, azomethine groups have been attracting significant research interest due to their high electrophilicity formed under the influence of strong electrophilic substituents. The combination of a polyhalidealkyl group and functional substitutes in close proximity to the azomethine bond reveals a wide range of possible chemical transformations, one of which is the production of heterocyclic derivatives. Since heterocyclic compounds are of interest in terms of their medical and synthetic prospects, research into the NH-acidity of these compounds is highly relevant. Information on the acid-base properties of such compounds is useful for predicting their reactivity and physical-chemical properties. The potentiometric titration method was used to determine the dissociation constants of the substances under study. As a result, titration curves with a different number of dissociation stages (their number was determined by the number of NH-groups) were obtained, which showed a clear jump in the potential of the indicating electrode. The experimental determination of the acid-base behaviour of the synthesized sulphonylamine-substituted imidazo[2,1-b]tiazoles and thiazolo[3,2-a]benzimidazoles was carried out in dimethylsulphoxide medium. The semi-neutralization potentials were determined using titration curves. A relationship between acidity constants (pKA) and semi-neutralization potentials was determined. The pKA =f (E1/2) dependence allows the constants of NH-acidity for newly synthesized compounds in dimethylsulphoxide medium to be predicted. The statistical range of the conducted potentiometric titration was determined. The obtained dissociation constants showed a high level of intermediate precision. The variation coefficients ranged from 0.34 to 1.48%. The PASS software was used to calculate the potential of biological activity (Pa) of the compounds under study. The relationship between NH-acidity and biological potential is still ambiguous.

About the authors

A. S. Plotnikova

Irkutsk State University

Email: nastyusha.plotnikova@inbox.ru

G. B. Nedvetskaya

Irkutsk State University

Email: galinanedvetskaya@gmail.com

Yu. A. Aizina

Irkutsk National Research Technical University; A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS

V. Yu. Serykh

A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS

Email: serykhvu@irioch.irk.ru

References

  1. Hanson S.M., Morlock E.V., Satyshur K.A., Czajkowski C. Structural requirements for eszopi-clone and zolpidem binding to the Y—aminobutyric acid type-A (GABAA) receptor are different // Journal of Medicinal Chemistry. 2008. Vol. 51. Issue 22. P. 7243-7252. https://doi.org/10.1021/jm800889m
  2. Chen Y., Lan Y., Cao X., Xu X., Zhang J., Yu M., et al. Sinthesis and evaluation of amide, sulfonamide and urea - benzisoxazole derivatives as potential atypical antipsychotics // Medicinal Chemistry Communication. 2015. Vol. 6. Issue 5. P. 831-838. https://doi.org/10.1039/C4MD00578C
  3. Margiotta N., Ostuni R., Ranaldo R., Denora N., Laquintana V., Trapani G., et al. Synthesis and characterization of a platinum(II) complex tethered to a ligand of the peripheral benzodiazepine receptor // Journal of Medicinal Chemistry. 2007. Vol. 50. Issue 5. P. 1019-1027. https://doi.org/10.1021/jm0612160
  4. Bechmann N., Kniess T., Koeckerling M., Pi-gorsch A., Steinbach J., Pietzsch J. Novel (pyrazo-lyi)benzenesulfonamides with a nitric oxidereleasing moiety as selective cyclooxygenase - 2 inhibitors // Bioorganic & Medicinal Chemistry Letters. 2015. Vol. 25. Issue 16. P. 3295-3300. https://doi.org/10.1016/j.bmcl.2015.05.059
  5. Aginagalde M., Vara Y., Arrieta A., Zangi R., Cebolla V.L., Delgado-Camon A., et al. Tandem-cycloaddition-dehydrogenation reactions involving imidazopyridines and imid-azopyrimidines // The Journal of Organic Chemistry. 2010. Vol. 75. Issue 9. P. 2776-2784. https://doi.org/10.1021/jo9022815
  6. Hoffmann M., Plutecka A., Rychlewska U., Kucybala Z., Paczkowski J., Pyszka I. New type of bonding formed from an overlap between n aromatic and n* CO molecular orbitals stabilizes the coexistence in one molecule of the ionic and neutral meso-ionic forms of imidazopyridine // The Journal of Physical Chemistry A. 2005. Vol. 109. Issue 20. P. 4568-4574. https://doi.org/10.1021/jp0447892
  7. Айзина Ю.А., Никитин А.Я., Левковская Г.Г. Расчетная методом PASS и экспериментальная оценка биологической активности сульфонамидо-полихлор-этилированных аренов и гетаренов. // Вестник ИрГТУ, 2014. N 12 (95), С. 188-191.
  8. Firke S.D., Bari S.B. Synthesis, biological evaluation and docking study of maleinide derivatives bearing benzenesulfonamide as selective COX- 2 inhibitors and anti - inflammatory agents // Bioorganic & Medicinal Chemistry. 2015. Vol. 23. Issue 17. P. 5273-5281. https://doi.org/10.1016/j.bmc.2015.07.070
  9. Aizina Yu.A., Rozentsveig I.B., Levkovskaya G.G., Mirskova A.N. Synthesis and properties of n-(2,2,2-trichloroethyl)-2- thiophenesulfonamides // Russian Journal of Organic Chemistry. 2003. Vol. 39. Issue 9. P. 1334-1337. https://doi.org/10.1023/B:RUJO.0000010224.50448.f5
  10. Rozentsveig I.B., Serykh V.Y., Chernysheva G.N., Chernyshev K.A., Kondrashov E.V., Tretyakov E.V., et al. One-pot synthesis of N-(imi-dazopyridin-3-yl)- and N-(imidazothiazol-5-yl)sulfonamides // European Journal of Organic Chemistry. 2013. Issue 2. P. 368-375. https://doi.org/10.1002/ejoc.201201006
  11. Serykh V.Y., Kaliev A.R., Ushakov I.A., Borodina T.N., Smirnov V.I., Rozentsveig I.B. Regioselective reaction of imidazole-2-thiols with N-sulfo-nylphenyl-dichloroacetaldimines: en route to novel sulfonylaminosubstituted imidazothiazoles and thiazolobenzimidazoles // Arkivoc. 2018. Part 3. P. 62-75. https://doi.org/10.24820/ark.5550190.p010.357
  12. Chen Y. Recent functionalizations of primary sulfonamides // Synthesis. 2016. Vol. 48. Issue 16. P. 2483-2522. https://doi.org/10.1055/s-0035-1562503
  13. Aizina Yu.A., Levkovskaya G.G., Ro zentsveig I.B. New synthetic approach to phenylmethanesulfonamide derivatives on the basis of phenyl-n-(2,2,2-trichloroethylidene)-methanesulfonami-de // Russian Journal of Organic Chemistry. 2012. Vol. 48. Issue 4. P. 477-480. https://doi.org/10.1134/S107042801204001X
  14. Aizina Yu.A., Rozentsveig I.B., Levkovskaya G.G. A novel synthesis of chloroacetamide derivatives via C-amidoalkylation of aromatics by 2-chloro-N-(2,2,2-trichloro-1-hydroxyethyl)acetamide // Arki-voc. 2011. Issue 8. P. 192-199. https://doi.org/10.3998/ark.5550190.0012.815
  15. Клоос О.В., Недвецкая Г.Б., Айзина Ю.А., Розейнцвейг И.Б. Сульфонамиды и их кислотные свойства в диметилсульфоксиде // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6. N 2 (17) С. 23-29. https://doi.org/10.21285/2227-2925-2016-6-2-23-29
  16. Крешков А.П., Алдарова Н.Ш., Танганов Б.Б. Химико-аналитическое поведение серосодержащих алифатических дикарбоновых кислот в среде неводных растворителей // Журнал аналитической химии. 1970. Т. 25. N 2. С. 362368.
  17. Фиалков Ю.Я. Не только в воде. 2-е изд., перераб. и доп. Л.: Химия, 1989. 88 с.
  18. Сергеев П.В., Шимановский Н.Л., Петров В.И. Рецепторы физиологически активных веществ; 2-е изд., перераб. и доп. Волгоград: Семь ветров, 1999. 640 с.
  19. Айзина Ю.А. Использование современных информационных технологий для выявления биологической активности органических соединений. // Вестник ИрГТУ, 2012. N 4 (63). С. 145-149.
  20. Айзина Ю.А. Синтетический поиск потенциально биологически активных продуктов из 2-ме-тилбензолсульфонамида // Вестник ИрГТУ, 2013. N 8 (79), С. 138-143.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).