Research into complexes of triethanolamine with ZnCl2 and CdCl2 using NMR Spectroscopy and Quantum Chemistry methods

Cover Page

Cite item

Full Text

Abstract

Complexes of triethanolamin with ZnCl2 and CdCl2 were studied using the methods of quantum chemistry and NMR spectroscopy. Triethanolamine complexes are prone to ligand exchange, which make them suitable as metal transporters. Therefore, research into the biological action of such compounds is of particular importance. 1H and 13C NMR spectra were recorded using a Bruker DPX250 pulsed spectrometer operated at 298 K. Non-empirical quantum-chemical calculations were performed by the B3LYP method using the Gaussian 09 software package. Changes in the chemical shifts and spin-spin coupling constants during the formation of triethanolamine complexes with heavy metals were studied. The obtained experimental data indicate that changes in the NMR spectrum shifts are accompanied by an increase in the spinspin coupling constants, with the 1J(C, H) constants of the methylene group associated with nitrogen being the most significant. On the basis of the conducted NMR spectrum analysis, the authors propose a scheme for describing the structure and intermolecular dynamics of the complexes under study. In order to elucidate the observed changes in the NMR spectra of triethanolamine in the process of complex formation, a series of quantum-chemical calculations was carried out. Three states corresponding to mono-, bi- and tricyclic structures were taken into account. According to the obtained theoretical and experimental results, the complexes under study are characterized by intermolecular metabolic processes that lead to the averaging of NMR signals from various compounds existing in the solution. For triethanolamine complexes with CdCl2, the existence of bi- and tricyclic forms is equally probable. For triethanolamine complexes with ZnCl2, the tricyclic form seems to be more beneficial.

About the authors

V. K. Voronov

Irkutsk National Research Technical University

Email: vladim.voronov1945@yandex.ru

O. V. Dudareva

Irkutsk National Research Technical University

Email: odudareva@mail.ru

E. A. Funtikova

Irkutsk National Research Technical University

Email: kxn@bk.ru

References

  1. Pinkert A., Ang K.L., Marsh K.N., Pang S. Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids // Physical Chemistry Chemical Physics. 2011. Vol. 13. Issue 11. P. 51365143. https://doi.org/10/1039/c0cp02222e
  2. Мирскова А.Н., Мирсков Р.Г., Адамович С.Н., Воронков М.Г. 2-Гидроксиэтиламмониевые соли органилсульфанил(сульфонил)уксусных кислот -новые фармакологически активные соединения // Химия в интересах устойчивого развития. 2011. Т. 19. N 5. С. 467-478.
  3. Оберлис Д., Харланд Б., Скальный А. Биологическая роль макро- и микроэлементов у человека и животных. СПб.: Наука, 2008. 248 с.
  4. Naiini А.А., Young V., Verkade J.G. New complexes of thriethanolamine (Tea): Novel structural features of(ClO4)3-3C5H5N and(NO3)2 // Polyhedron. 1995. Vol. 14. Issue 3. P. 393-400. https://doi.org/10.1016/0277-5387(95)93020-2
  5. Расулов М.М., Воронков М.Г., Нурбе-ков М.К., Зверева М.В., Мирскова А.Н., Адамович С.Н., Мирсков Р.Г. Комплекс бис-2-(метил-феноксиацетат) цинка с трис-2-(гидроксиэтил) амином - активатор синтеза суммарной триптофанил-тРНК-синтетазы // Доклады Академии наук. 2012. Т. 444. N. 2. C. 219-220.
  6. Колесникова О.П., Мирскова А.Н., Адамович С.Н., Кузнецова Г.А., Кудаева О.Т., Гольдина И.А.. Скрининг иммуноактивных свойств триэтаноламина с солями биомикроэлементов // Бюллетень СО РАМН. 2009. N 6 (140). С. 73-79.
  7. Патент N 2623034, Российская Федерация. Противоопухолевое средство / С.Н., Адамович, А.Н. Мирскова, О.П. Колеснткова; патентообладатель Иркутский институт хими им. А.Е. Фаворского СО РАН; заявл. 28.07.20164 опубл. 21.06.2017.
  8. Ushakov I.A., Voronov V.K., Grishmanovskii D.S., Adamovich S.N., Mirskov R.G., Mirskova A.N. NMR spectra of metallated alkanolammonium ionic liquids // Russian Chemical Bulletin. 2015. Vol. 64. Issue 1. P. 58-61. https://doi.org/10.1007/s11172-015-0821-x
  9. Панюшкин В.Т., Черныш Ю.Е., Волынкин В.А., Бородкин Г.С., Бородкина И.Г. Ядерный магнитный резонанс в структурных исследованиях. М.: КРАСАНД, 2016. 352 с.
  10. Voronov V.K., Ushakov I.A. Structure and intramolecular dynamics of biologically active compounds: analysis of NMR spectra transformed by spin labels // Applications of NMR Spectroscopy. 2016. Vol. 5. P. 3-62. https://doi.org/10.2174/97816810826751160500006
  11. Ushakov I.A., Voronov V.K., Adamovich S.N., Mirskov R.G., Mirskova A.N.. The NMR study of biologically active metallated alkanol am-moinium ionic liquids // Journal of Molecular Structure. 2016. Vol. 1103. P. 125-131. https://doi.org//10.1016/j.molstruc.2015.08.074
  12. Naqi H.A., Woodman T.J., Husbands S.M., Blagbrough I.S. 19F and 1H quantitative-NMR spectroscopic analysis of fluorinated third-generation synthetic cannabinoids // Analytical Methods. 2019. Vol. 11. Issue 24. P. 3090-3100. https://doi.org/10.1039/c9ay00814d
  13. Chernyak A.V., Slesarenko N.A., Volkov V.I. Complexes based on calixarene sulfonic acid with acetic acid and Its derivatives: NMR analysis // Applied Magnetic Resonance. 2019. Vol. 50. Issue 1-3. P. 199-209. https://doi.org/10.1007/s00723-018-1063-5
  14. Воронов В.К. Исследование молекулярного строения по спектрам ЯМР высокого разрешения, трансформированным парамагнитными комплексами // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 2. С. 183-193. https://doi.org/10.21285/2227-2925-2019-9-2-183-193
  15. Voronov VK. Use of high-resolution NMR spectra transformed by paramagnetic complexes for studying molecular structure. Izvestiya Vuzov. Priklad-naya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(2)183-193. (In Russian) https://doi.org/10.21285/2227-2925-2019-9-2-183-193
  16. Waudby C.A., Ouvry M., Davis B., Chris-todoulou J. Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments // Journal of Biomolecular NMR. 2020. Vol. 74. Issue 55. P. 95-109. https://doi.org/10.1007/s10858-019-00297-7
  17. Selivanov S.I., Wang S., Filatov A.S., Stepa-kov A.V. NMR study of spatial structure and internal dynamic of adducts of ninhydrin-derived azomethine ylide with cyclopropenes // Applied Magnetic Resonance. 2020. Vol. 51. Issue 2. P. 165-182. https://doi.org/10.1007/s00723-019-01178-w
  18. Krivdin LB, Sauer SPA, Peralta JE, Contreras RH. Non-empirical calculation of NMR indirect carboncarbon coupling constants: 1.Three-mem-bered rings. Magnetic Resonance in Chemistry. 2002;40(3):187-194. https://doi.org/10.1002/MRC.989
  19. Rusakov Yu.Yu., Krivdin L.B. Modern quantum chemical methods for calculating spin-spin coupling constants: theoretical basis and structural applications in chemistry // Russian Chemical Reviews. 2013. Vol. 82. Issue 2. P. 99-130. https://doi.org/10.1070/RC2013v082n02ABEH004350
  20. Krivdin L.B. Carbon-carbon spin-spin coupling constants: Practical applications of theoretical calculations // Progress in Nuclear Magnetic Resonance Spectroscopy. 2018. Vol. 105. P. 54-99. https://doi.org/10.1016/j.pnmrs.2018.03.001

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).