Selection of the most beneficial raw materials for the synthesis of biodiesel from a standpoint of its yield and physicochemical properties

Cover Page

Cite item

Full Text

Abstract

Biodiesel presents itself as one of the most promising alternative energy sources at the present time, both as a pure fuel and a mixed component of petroleum-based diesel fuels. According to research works carried out around the world, the addition of biodiesel to diesel oil is established to significantly improve the environmental friendliness of this oil product. Nevertheless, its effect on most regulated operational indicators remains ambiguous due to the characteristics of biodiesel fuel varying greatly depending on the feed-stock. The present paper is aimed at resolving the issue of selecting the most beneficial raw material for the synthesis of biodiesel from the perspective of the target product yield, physicochemical and low temperature characteristics. In this study, biodiesel was synthesised from five different edible vegetable oils (sunflower, mustard, linseed, corn and camelina) using ethanol and potassium hydroxide as transesterifying agent and catalyst, respectively. The main physicochemical (density, dynamic and kinematic viscosity, molecular weight) and low-temperature (cloud point and pour point) properties of vegetable oils, as well as biodiesel fuels derived therefrom, are determined. According to the obtained yield values of the target product, sunflower oil is shown to be the optimal raw material for the synthesis of biodiesel. From the position of their physical and chemical properties, sunflower and corn oil appear to equally preferential, while, with regard to low temperature properties, mustard oil turns out to be the optimal feedstock. Sunflower oil was additionally determined to be a leader in terms of economics. The paper presents recommendations for choosing the most preferable raw materials for the synthesis of biodiesel, which are useful in application of biodiesel as a mixed component for commercial diesel fuels.

About the authors

N. E. Belozertseva

Tomsk Polytechnic University

Email: belozertsevanatasha@mail.ru

I. A. Bogdanov

Tomsk Polytechnic University

Email: bogdanov_ilya@mail.ru

A. A. Altynov

Tomsk Polytechnic University

Email: andrey_altun@mail.ru

A. T. Balzhanova

Tomsk Polytechnic University

Email: balzhanova@mail.ru

N. S. Belinskaya

Tomsk Polytechnic University

Email: belinskaya@tpu.ru

M. V. Kirgina

Tomsk Polytechnic University

Email: mkirgina@tpu.ru

References

  1. Erdiwansyah, Mamat R., Sani M.S.M., Sudhakar K., Kadarohman A., Sardjono R.E. An over-view of Higher alcohol and biodiesel as alternative fuels in engines // Energy Reports. 2019. Vol. 5. P. 467–479. https://doi.org/10.1016/j.egyr.2019.04.009
  2. Марков В.А., Каськов С.И. Лобода С.С. Растительные масла как экологическая добавка к нефтяному дизельному топливу // Известия высших учебных заведений. Машиностроение. 2018. N 7. С. 48–60. https://doi.org/10.18698/0536-1044-2018-7-48-60
  3. Dwivedi G., Jain S., Sharma M.P. Impact analysis of biodiesel on engine performance – A review // Renewable and Sustainable Energy Reviews. 2011. Vol. 15. P. 4633–4641. https://doi.org/10.1016/j.rser.2011.07.089
  4. Srithar K., Balasubramanian K.A. Dual biodiesel for diesel engine -Property, performance and emission analysis // International Energy Journal. 2014. Vol. 14. Issue 3. P. 107–120.
  5. Tongroon M., Saisirirat P., Suebwong A., Au-nchaisri J., Kananont M., Chollacoop N. Combustion and emission characteristics investigation of diesel-ethanol-biodiesel blended fuels in a compression-ignition engine and benefit analysis // Fuel. 2019. Vol. 255. 115728. https://doi.org/10.1016/j.fuel.2019.115728
  6. Богданов И.А., Алтынов А.А., Белинская Н.С., Киргина М.В. Исследование влияния состава прямогонных дизельных топлив на эффективность действия низкотемпературных присадок // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2018. N 11. С. 37–42.
  7. Капустин В.М., Карпов С.А., Сайдахмедов А.И. Биодизельное топливо: преимущества, недостатки и перспективы промышленного производства // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2011. N 4. С. 49–54.
  8. Левтеров А.М., Савицкий В.Д., Левтерова Л.И. Экспериментальные исследования моторных качеств смесевого биодизельного топлива // Автомобильный транспорт. 2011. N 28. С. 81–84.
  9. Дворецкий С.И., Зазуля А.Н., Нагорнов С.А., Романцова С.В., Рязанцева И.А. Производство биодизельного топлива из органического сырья // Вопросы современной науки и практики. Университет им. В.И. Вернадского. 2012. N 5 (39). С. 126–135.
  10. Günay M.E., Türker L., Tapan N.A. Significant parameters and technological advancements in biodiesel production systems // Fuel. 2019. Vol. 250. P. 27–41. https://doi.org/10.1016/j.fuel.2019.03.147
  11. Tapan N.A., Yıldırım R., Günay M.E. Ana-lysis of past experimental data in literature to determine conditions for high performance in bio-diesel production // Biofuels, Bioproducts and Biorefining. 2016. Vol. 10. N 4. P. 422–434. https://doi.org/10.1002/bbb.1650
  12. Islam A., Taufiq-Yap Y.H., Chan E.S. Moniruzzaman M., Islam S., Nabi M.N. Advances in solid-catalytic and non-catalytic technologies for biodiesel production // Energy Conversion and Management. 2014. Vol. 88. P. 1200–1218. https://doi.org/10.1016/j.enconman.2014.04.037
  13. Gusniah A., Veny H., Hamzah F. Ultrasonic assisted enzymatic transesterification for biodiesel production // Industrial and Engineering Chemistry Research. 2019. Vol. 58. Issue 2. P. 581–589. https://doi.org/10.1021/acs.iecr.8b03570
  14. Sun S., Guo J., Duan X. Biodiesel preparation from Phoenix tree seed oil using ethanol as acyl acceptor // Industrial Crops and Products. 2019. Vol. 137. P. 270–275.
  15. Yang X.X., Wang Y.T., Yang Y.T., Feng E.Z., Luo J., Zhang F., et al. Catalytic transesterification to biodiesel at room temperature over several solid bases // Energy Conversion and Management. 2018. Vol. 164. P. 112–121. https://doi.org/10.1016/j.enconman.2018.02.085
  16. Abbah E.C., Nwandikom G.I., Egwuonwu C.C., Nwakuba N.R. Effect of reaction temperature on the yield of biodiesel from neem seed oil // Ameri-can Journal of Energy Science. 2016. Vol. 3. N 3. P. 16–20.
  17. Leung D.Y.C., Guo Y. Transesterification of neat and used frying oil: optimization for bio-diesel production // Fuel Processing Technology. 2006. Vol. 87. N 10. P. 883–890. https://doi.org/10.1016/j.fuproc.2006.06.003
  18. Singh D., Sharma D., Soni S.L., Sharma S., Kumar D. Chemical compositions, properties, and standards for different generation biodiesels: A review // Fuel. 2019. Vol. 253. P. 60–71. https://doi.org/10.1016/j.fuel.2019.04.174
  19. Сноре М., Мяки-Арвела П., Симакова И.Л., Мюллюойа Ю., Мурзин Д.Ю. Обзор каталитических методов производства биодизельного топлива из натуральных масел и жиров // Сверхкритические флюиды: теория и практика. 2009. Т. 4. N 1. С. 3–17.
  20. Саргужиева Б.А. Реакции алкоголиза и переэтерификации в процессе производства биотоплива // Наука в центральной России. 2015. N 5 (17). С. 75–84.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).