Full-genome sequencing of the Staphylococcus warneri strain isolated from oil-contaminated soil

Cover Page

Cite item

Full Text

Abstract

Bacterial consortium bioremediation presents itself a promising approach to the treatment water, soil and the atmosphere for pollution by oil and its derivatives. In the territory of the Romashkinskoye oil field, Republic of Tatarstan, various decomposers were isolated from oil-contaminated black soil, including three that demonstrated oil resistance and ability to produce biosurfactants. The genome sequencing of the Staphylococcus warneri strain isolated in a consortium of decomposers was performed on the MiSeq Illumina plat-form. The average content of GC pairs in the genome comprised 32.7 %. Genome annotation was performed using the RAST server. The SEED viewer was applied for subsystem category distribution of predicted genes. The sequenced genome of Staphylococcus warneri strain was identified as containing 2535 protein coding sequences. The majority of annotated genes govern the synthesis of amino acids and their derivatives (255), carbohydrate (195) and protein metabolism (167), cofactors, vitamins, prosthetic groups and pigmented formations (87), nucleosides and nucleotides (78), fatty acid metabolism, lipids and isoprenoids (55), as well as DNA metabolism (68). The full-genome sequencing and genome annotation of the Staphylococcus warneri strain confirmed its hydrocarbon-oxidising properties. The yddN and yceB genes of uncharacterised proteins were identified as similar to alkanal monooxygenases likely to be involved in the biodegradation of alkanes. The three genes detected in this strain code the catechol-2,3-dioxygenase, fumarylacetoacetate hydrolase and salicylate-1-monooxygenase enzymes involved in the biodegradation of aromatic hydrocarbons. The obtained genome sequence data help to provide a better understanding of the process of hydrocarbon degradation (absorption) by the Staphylococcus warneri strain and its role in the bacterial consortium.

About the authors

I. A. Degtyareva

Tatar Research Institute of Agrochemistry and Soil Science, the “Kazan Scientific Centre of the Russian Academy of Sciences” Federal Research Centre; Kazan National Research Technological University

Email: peace-1963@mail.ru

E. V. Babynin

Kazan Federal University; Tatar Research Institute of Agrochemistry and Soil Science, the “Kazan Scientific Centre of the Russian Academy of Sciences” Federal Research Centre

Email: edward.b67@mail.ru

T. Yu. Motina

Tatar Research Institute of Agrochemistry and Soil Science, the “Kazan Scientific Centre of the Russian Academy of Sciences” Federal Research Centre

Email: motina.tatyana@mail.ru

M. I. Sultanov

Tatar Research Institute of Agrochemistry and Soil Science, the “Kazan Scientific Centre of the Russian Academy of Sciences” Federal Research Centre

Email: niiaxp2@mail.ru

References

  1. Hu G., Li J., Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review // Journal of Hazardous Materials. 2013. Vol. 261. P. 470–490. https://doi.org/10.1016/j.jhazmat.2013.07.069
  2. Fuentes S., Méndez V., Aguila P., Seeger M.Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications // Applied Microbiology and Biotechnology. 2014. Vol. 98. Issue 11. P. 4781–4794. https://doi.org/10.1007/s00253-014-5684-9
  3. Дегтярева И.А., Яппаров И.А., Яппаров А.Х., Ежкова А.М., Давлетшина А.Я., Шайдуллина И.А. Создание и применение биоудобрения на основе эффективного консорциума микроорганизмов-деструкторов для рекультивации нефтезагрязненных почв Республики Татарстан // Нефтяное хозяйство. 2017. N. 5. С. 100–103. https://doi.org/10.24887/0028-2448-2017-5-100-103
  4. Juwarkar A.A., Misra R.R., Sharma J.K. Re-cent trends in bioremediation. In: Parmar N., Singh A. (eds.). Geomicrobiology and Biogeochemistry. Berlin: Springer. 2014. P. 81–100.
  5. Дегтярева И.А., Давлетшина А.Я. Применение консорциума аборигенных углеводородокисляющих микроорганизмов для ремедиации черноземной и серой лесной почв Республики Татарстан // Вестник Казанского технологического университета. 2015. Т. 18. N. 4. С. 275–278.
  6. Brooijmans R.J.W., Pastink M.I., Siezen R.J. Hydrocarbon-degrading bacteria: the oil-spill clean-up crew // Microbial Biotechnology. 2009. Vol. 2. Issue 6. P. 587–594. https://doi.org/10.1111/j.1751-7915.2009.00151.x
  7. Carmona M., Zamarro M.T., Blazquez B., Durante-rodriguez G., Juarez J.F., Valderrama J.A., et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic view // Microbiology and Molecular Biology Reviews. 2009. Vol. 73. Issue 1. P. 71– 133. https://doi.org/10.1128/MMBR.00021-08
  8. Дегтярева И.А., Хидиятуллина А.Я. Оценка влияния природных ассоциаций углеводородокисляющих микроорганизмов на состояние нефтезагрязненной почвы // Ученые записки Казанского университета. 2011. Т. 153. N. 3. С. 137–143.
  9. Moscoso F., Teijiz I., Deive F.J., Sanromán M.A. Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale // Bioresource Technology. 2012. Vol. 119. P. 270–276. https://doi.org/10.1016/j.biortech.2012.05.095
  10. M’rassi A.G., Bensalah F., Gury J., Duran R. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons // Environmental Science and Pollution Research. 2015. Vol. 22. Is-sue 20. P. 15332–15346. https://doi.org/10.1007/s11356-015-4343-8
  11. Bhardwaj B., Bhatnagar U.B., Conaway D. G. An unusual presentation of native valve endocarditis caused by Staphylococcus warneri // Reviews in Cardiovascular Medicine. 2016. Vol. 17. Issue 3-4. P. 140–143. https://doi.org/10.3909/ricm0823
  12. Godini K., Samarghandi M.R., Zafari D., Rahman A.R., Afkhami A., Arabestani M.R. Isolation and identification of new strains of crude oil degrading bacteria from Kharg Island, Iran // Petroleum Science and Technology. 2018. Vol. 36. Issue 12. P. 869–874. https://doi.org/10.1080/10916466.2018.1447961
  13. Popowicz G.M., Dubin G., Stec-Niemczyk J., Czarny A., Dubin A.D., Potempa J., et al. Functional and structural characterization of Sp1 protease from Staphylococcus aureus // Journal of Molecular Biology. 2006. Vol. 358. Issue 1. P. 270–279. https://doi.org/10.1016/j.jmb.2006.01.098
  14. Eddouaouda K., Mnif S., Badis A., Younes S.B., Cherif S., Ferhat S., et al. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation // Journal of Basic Microbiology. 2012. Vol. 52. Issue 4. P. 408–418. https://doi.org/10.1002/jobm.201100268
  15. Bankevich A., Nurk S., Antipov D., Gurevich A., Dvorkin M., Kulikov A., et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing // Journal of Computational Biology. 2012. Vol. 19. P. 455–477. https://doi.org/10.1089/cmb.2012.0021
  16. Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes // Scientific Reports. 2015. Vol. 5. P. 8365. https://doi.org/10.1038/srep08365
  17. Overbeek R., Olson R., Pusch G.D., Olsen G.J., Davis J.J., et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST) // Nucleic Acids Research. 2014. Vol. 42. P. D206–D214. https://doi.org/10.1093/nar/gkt1226
  18. Mesarch M.B., Nakatsu C.H., Nies L. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR // Applied and Environmen Microbiology. 2000. Vol. 66. Issue 2. P. 678–683. https://doi.org/10.1128/aem.66.2.678-683.2000
  19. Pérez-Pantoja D., González B., Pieper D.H. Aerobic degradation of aromatic hydrocarbons. In: Timmis K.N. (eds.). Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer, 2010. P. 799–837.
  20. Sierra-Garcia I.N., Alvarez J.C., de Vasconcellos S.P., de Souza A.P., dos Santos Neto E.V., de Oliveira V.M. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs // Public Library of Science. 2014. Vol. 9. Issue 2. P. e90087. https://doi.org/10.1371/journal.pone.0090087

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).