Pilot submerged cultivation of Trichoderma asperellum RNCIM F-1323 micromycete

Cover Page

Cite item

Full Text

Abstract

The study is aimed at developing a pilot industrial method for producing a biofungicide based on the fungus of Trichoderma genus. The cultivation was carried out by submerging in a pilot industrial bioreactor line with an inoculation bioreactor having a total volume of 10 litres and a working bioreactor with a total volume of 100 litres. Czapek’s modified nutrient medium was used with yeast extract and molasses replacing sucrose, g/L: molasses – 20; yeast extract – 7; NaNO3 – 2; K2HPO4 – 1; MgSO4 – 0.5; KCl – 0.5; FeSO4 – 0.01. Cultivation was carried out maintaining the following parameters: temperature – 27±0.5 ºС; culture medium mixing speed – 600 rpm; aeration intensity – 1 L of air per 1 L of culture medium per min. The inoculum was grown on a nutrient medium of a similar composition in rocking flasks with a total and a working volume of 750 and 100 mL, respectively. Inoculated flasks were incubated using an Innova 40R shaker incubator (New Brunswick, USA) at 200 rpm for 22–24 h until a dry biomass index of 6.5–7.5 g/L was achieved. Conidia concentration was calculated using a Goryaev camera.  Liquid cultivation was selected due to its relatively short process time. In addition, unlike solid-phase, the submerged cultivation provides for the accumulation of numerous secondary metabolites having antagonistic activity against phytopathogens in the finished form of the preparation. The object of the study was the Trichoderma asperellum RNCIM F-1323 strain with antagonistic activity against many phytopathogens. From a technical and economic point of view, the culture transfer to an inoculation bioreactor in an amount of 5 % vol. was established to be justified as a result of the experiments. The effect of various time values for cultivation in inoculation bioreactor on the growth rate of micromycetes in a working bioreactor was studied. The optimal time for transfer to a working bioreactor was determined to be within 20–24 h. At the end of the cultivation process, the conidia concentration was equal to 1.9·108 conidia/mL.

About the authors

D. D. Ziganshin

Kazan National Research Technological University

Email: ziganshind@gmail.com

A. A. Egorshina

Organic park Ltd

Email: egorshina.a.a@bionovatic.ru

M. A. Luk'yantsev

Organic park Ltd

Email: lukyantsev.m.a@bionovatic.ru

A. S. Sirotkin

Kazan National Research Technological University

Email: asirotkin66@gmail.com

References

  1. Damalas C.A., Koutroubas S.D. Current status and recent developments in biopesticide use // Agriculture 2018. Vol. 8. Issue 1. 13 p. https://doi.org/10.3390/agriculture8010013
  2. Olson S. An analysis of the biopesticide market now and where it is going // Outlooks on Pest Management. 2015. Vol. 26. N 5. P. 203–206. https://doi.org/10.1564/v26_oct_04
  3. Srivastava M., Vipul K., Mohamad S., Pandey S., Anuradha S. Trichoderma – a potential and effective bio fungicide and alternative source against notable phytopathogens: A review // African Journal of Agricultural Research. 2016. Vol. 11. Issue 5. P. 310–316. https://doi.org/10.5897/AJAR2015.9568
  4. Waghunde R.R., Shelake R.M., Sabalpara A.N. Trichoderma: A significant fungus for agriculture and environment // African Journal of Agricultural Research. 2016. Vol. 11. Isue 22. P. 1952–1965. https://doi.org/10.5897/AJAR2015.10584
  5. Vos C.M., De Cremer K., Cammue B.P., De Coninck B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease // Molecular Plant Pathology. 2015. Vol. 16. Issue 4. P. 400–412. https://doi.org/10.1111/mpp.12189
  6. Sadykova V.S., Kurakov A.V., Kuvarina A.E., Rogozhin E.A. Antimicrobial activity of fungi strains of Trichoderma from Middle Siberia // Applied Biochemistry and Microbiology. 2015. Vol. 51. Issue 3. P. 355–361. https://doi.org/10.1134/S000368381503014X
  7. Keszler A., Forgács E., Kótai L., Vizcaíno J.A., Monte E., García-Acha I. Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography-mass spectrometry // Journal of Chromatographic Science. 2000. Vol. 38. Issue 10. P. 421–424. https://doi.org/10.1093/chromsci/38
  8. Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. Tricho-derma–plant–pathogen interactions // Soil Biology and Biochemistry. 2008. Vol. 40. Issue 1. P. 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
  9. Алимова Ф.К. Промышленное применение грибов рода Trichoderma. Казань: Изд-во Казанского государственного университета, 2006. 209 с.
  10. Mukherjee P.K., Wiest A., Ruiz N., Keightley A., Moran-Diez M.E., McCluskey K., et al. Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens // Journal of Biological Chemistry. 2011. Vol. 286. Issue 6. P. 4544–4554. https://doi.org/10.1074/jbc.M110.159723
  11. Зиганшин Д.Д., Захаров В.В., Сироткин А.С., Егоршина А.А., Лукьянцев М.А. Влияние различных источников углерода на конидиеобразование микромицета Trichoderma asperellum OPF-19 в условиях глубинного культивирования // Биотехнология: состояние и перспективы развития. 2017. С. 115–117.
  12. Пат. № 2634415 С1, Российская Федерация. C12N1/14; A01N63/04. Штамм гриба Trichoderma asperellum для получения биопрепарата комплексного действия для растениеводства / А.А. Егоршина, М.А. Лукьянцев, Д.Д. Зиганшин, Ю.В. Лесянкина, О.И. Лапина, Г.Х. Шаймуллина; патентообладатель ООО «Органик парк»; заявл. 02.08.2016; опубл. 26.10.2017. Бюл. N 30.
  13. Пат. № 2658430, Российская Федерация. Способ получения биопрепарата для обработки растений / А.А. Егоршина, М.А. Лукьянцев, Д.Д. Зиганшин, В.В. Захаров, Н.В. Бадрутдинов; заявл. 26.12.2016; опубл. 21.06.2018. Бюл. N 18.
  14. Sonnleitner B., Locher G., Fiechter A. Biomass determination // Journal of Biotechnology. 1992. Vol. 25. Issue 1-2. P. 5–22. https://doi.org/10.1016/0168-1656(92)90107-K
  15. Темершин Д.Д., Новоселов А.Г., Гуляева Ю.Н., Шуваев Е.В. Исследование процесса культивирования чистой культуры пивных дрожжей в кожухотрубном струйно-инжекционном аппарате // Ползуновский вестник. 2018. N. 4. С. 78– 83. https://doi.org/10.25712/ASTU.2072-8921.2018.04.016663.132
  16. Schultz D., Kishony R. Optimization and control in bacterial lag phase // BMC Biology. 2013. Vol. 11. Issue 1. P. 120. https://doi.org/10.1186/1741-7007-11-120
  17. Pelley J.W. Citric acid cycle, electron transport chain, and oxidative phosphorylation. In: Elsevier's Integrated Review Biochemistry. 2nd ed. Philadelphia, PA: WB Saunders. 2012. P. 57–65. https://doi.org/10.1016/B978-0-323-03410-50013-4

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).