Role of angiotensin II and neuroendocrine factors in immunological regulation in patients with coronary heart disease: prospective cross-sectional study

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Among chronic noncommunicable diseases, cardiovascular diseases, particularly coronary heart disease (CHD), are the leading cause of death. The rennin-angiotensin-aldosterone system plays an important role in CHD development and progression; however, its role in the regulation of immunoneuroendocrine interactions requires further analysis.

OBJECTIVE: To study the relationship between angiotensin II (AT II) and molecular regulators of the activity of whole blood mononuclear cells (MNCs) in patients with angina pectoris.

MATERIALS AND METHODS: This cross-sectional study enrolled 65 patients with exertional angina aged 45–67 years, including 19 apparently healthy individuals. The levels of interleukins (ILs), transforming growth factor-β1 (TGF-β1), prostaglandin E2 (PG E2), serotonin, thyroid-stimulating hormone (TSH), and AT II in the blood serum were determined. In MNCs, the concentrations of protein kinases FAK, JNK, p38, and ERK, signal transducers, and activators of transcription (STAT 3, 5A, and 6) were determined.

RESULTS: In patients with coronary artery disease, the production of TGF-β1 increased by 7.2% (p=0.00001), AT II by 136.9% (p=0.0001), serotonin by 129.0% (p=0.00001), IL-18 by 92.5% (p=0.00001), TSH by 51.7% (p=0.0012), ERK protein kinase content by 86.4% (p=0.0001), JNK by 56.8% (p=0.0001), and FAK by 55.3% (p=0.00002). The levels of IL-15 also decreased by 38.1% (p=0.0001), PG E2 by 39.5% (p=0.0001), and STAT3 by 52.5% (p=0.0001).

CONCLUSION: The nature of the identified relationships among the analyzed factors allows us to consider AT II as a factor that ensures adaptive coupling of immune and neuroendocrine regulatory mechanisms in patients with coronary artery disease, contributing to a change in the balance between macrophages and T-helper types 1 and 2.

About the authors

Vladimir K. Parfenyuk

Razumovsky Saratov State Medical University

Email: parfenyk0111@mail.ru
ORCID iD: 0000-0003-1329-4178
SPIN-code: 8154-2179

МD, Dr Sci. (Med.),  department professor

Russian Federation, Saratov

Anna V. Logatkina

Tula State University

Email: Logatkina_a@mail.ru
ORCID iD: 0000-0002-3397-136X
SPIN-code: 5365-6058

graduate student

Russian Federation, Tula

Stanislav S. Bondar

Kaluga Regional Clinical Hospital

Email: stos34@list.ru
ORCID iD: 0000-0003-2749-8366
SPIN-code: 6644-6951

therapist

Russian Federation, Kaluga

Igor V. Terekhov

Tsiolkovsky Kaluga State University

Author for correspondence.
Email: trft@mail.ru
ORCID iD: 0000-0002-6548-083X
SPIN-code: 2798-1551

МD, Cand Sci. (Med.), associate professor

Russian Federation, Kaluga

Viktor S. Nikiforov

Mechnikov North-Western State Medical University

Email: viktor.nikiforov@szgmu.ru
ORCID iD: 0000-0001-7862-0937
SPIN-code: 4652-0981

МD, Dr Sci. (Med.), department professor

Russian Federation, St. Petersburg

References

  1. Kobalava ZD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. (In Russ). doi: 10.15829/1560-4071-2020-3-3786
  2. Satou R, Penrose H, Navar LG. Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Curr Hypertens Rep. 2018;20(12):100. doi: 10.1007/s11906-018-0900-0
  3. Simbirtsev AS. Cytokines in the pathogenesis and treatment of human diseases. St.Petersburg: Foliant; 2018 (In Russ).
  4. Caroccia B, Vanderriele PE, Seccia TM, et al. Aldosterone and cortisol synthesis regulation by angiotensin-(1-7) and angiotensin-converting enzyme 2 in the human adrenal cortex. J Hypertens. 2021;39(8):1577–1585. doi: 10.1097/HJH.0000000000002816
  5. Gein SV, Baeva TA. Endomorphins: structure, localization, immunoregulatory activity. Problems of Endocrinology. 2020;66(1):78–86. (In Russ). doi: 10.14341/probl10364
  6. Kunelskaya NL, Guseva AL, Chistov SD. The level of β-endorphin, chronic stress, and depression associated with vestibular pathology. Vestnik Oto-Rino-Laringologii. 2015;80(1):12–16. (In Russ). doi: 10.17116/otorino201580112-16
  7. Logatkina AV, Nikiforov VS, Bondar' SS, Terekhov IV. Proinflammatory cytokines and signaling pathways in peripheral blood mononuclear cells in patients with coronary heart disease. Clinical Medicine (Russian Journal). 2017;95(3):238–244. (In Russ). doi: 10.18821/0023-2149-2017-95-3-238-244
  8. Dittel LJ, Dittel BN, Brod SA. Ingested (Oral) Adrenocorticotropic Hormone Inhibits IL-17 in the Central Nervous System in the Mouse Model of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Immunohorizons. 2022;6(7):497–506. doi: 10.4049/immunohorizons.2200023
  9. Priyadarshini S, Pradhan B, Griebel P, Aich P. Cortisol regulates immune and metabolic processes in murine adipocytes and macrophages through HTR2c and HTR5a serotonin receptors. Eur J Cell Biol. 2018;97(7):483–492. doi: 10.1016/j.ejcb.2018.07.004
  10. Aladio JM, Costa D, Matsudo M, et al. Cortisol-Mediated Stress Response and Mortality in Acute Coronary Syndrome. Curr Probl Cardiol. 2021;46(3):100623. doi: 10.1016/j.cpcardiol.2020.100623
  11. Kobiec T, Otero-Losada M, Chevalier G, et al. The Renin-Angiotensin System Modulates Dopaminergic Neurotransmission: A New Player on the Scene. Front Synaptic Neurosci. 2021;(13):638519. doi: 10.3389/fnsyn.2021.638519
  12. Gordeeva EK, Kade AK. Correction of cytokine and hormonal imbalance in the treatment of angina pectoris. Kuban Scientific Medical Bulletin. 2018;25(3):51–55. (In Russ). doi: 10.25207/1608-6228-2018-25-3-51-55
  13. Terekhov IV, Solodukhin KA, Nikiforov VS, Lomonosov AV. Radiometry of water-containing myocardial tissue in patients with arterial hypertension. Russian Journal of Cardiology. 2013;18(5):40–43. (In Russ). doi: 10.15829/1560-4071-2013-5-40-43
  14. Zilov VG, Khadartsev AA, Terekhov IV, Bondar' SS. Relationship between the Contents of Cyclins, Cyclin-Dependent Kinases, and Their Inhibitors in Whole Blood Mononuclear Leukocytes during the Postclinical Stage of Community-Acquired Pneumonia under the Influence of 1-GHz Microwaves. Bull Exp Biol Med. 2017;163(5):623–626. doi: 10.1007/s10517-017-3864-1
  15. Terekhov IV, Solodukhin KA, Nikiforov VS, et al. Features of the biological effect of low-intensity microwave irradiation under conditions of antigenic stimulation of whole blood mononuclears. Physiotherapist. 2013;(1):26–32. (In Russ).
  16. Logatkina AV, Bondar SS, Nikiforov VS, et al. Features of the effect of antioxidant status on the production of cytokines and pro-inflammatory molecules under stimulation of human whole blood cells with mitogen and lipopolysaccharide. Problems of Biological, Medical and Pharmaceutical Chemistry. 2022;25(4):29–39. (In Russ). doi: 10.29296/25877313-2022-04-05
  17. Bondar SS, Terekhov IV, Nikiforov VS, et al. The relationship of JAK/STAT and MAPK/SAPK signaling pathways, NF-kB and content in the mononuclear cells of whole blood thioredoxins in the post-clinical stage of community-acquired pneumonia. Consilium Medicum. 2018;20(11):61–65. (In Russ). doi: 10.26442/20751753.2018.11.180091
  18. Khadartcev AA, Logatkina AV, Terekhov IV, Bondar SS. Metabolic changes in hypertensive patients treated by low-intensity microwave therapy. Arterial Hypertension. 2018;24(2):206–216. (In Russ). doi: 10.18705/1607-419X-2018-24-2-206-216
  19. Xue HM, Sun WT, Chen HX, et al. Targeting IRE1α-JNK-c-Jun/AP-1-sEH Signaling Pathway Improves Myocardial and Coronary Endothelial Function Following Global Myocardial Ischemia / Reperfusion. Int J Med Sci. 2022;19(9):1460–1472. doi: 10.7150/ijms.74533
  20. Feng B, Lin L, Li L, et al. Glucocorticoid induced group 2 innate lymphoid cell overactivation exacerbates experimental colitis. Front Immunol. 2022;(13):863034. doi: 10.3389/fimmu.2022.863034
  21. Yu T, Gan S, Zhu Q, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 2019;10(1):4353. doi: 10.1038/s41467-019-12384-2
  22. Liu G, Chen Y, Wang Y, et al. Angiotensin II enhances group 2 innate lymphoid cell responses via AT1a during airway inflammation. J Exp Med. 2022;219(3):e20211001. doi: 10.1084/jem.20211001
  23. Rao E, Zhang Y, Zhu G, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6(10):7944–7958. doi: 10.18632/oncotarget.3501
  24. Suarez J, Scott BT, Suarez-Ramirez JA, et al. Thyroid hormone inhibits ERK phosphorylation in pressure overload-induced hypertrophied mouse hearts through a receptor-mediated mechanism. Am J Physiol Cell Physiol. 2010;299(6):C1524–C1529. doi: 10.1152/ajpcell.00168.2010
  25. Yang H, Xia L, Chen J, et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019;25(9):1428–1441. doi: 10.1038/s41591-019-0566-4
  26. Dong J, Li J, Cui L, et al. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-κB and MAPK pathways. BMC Vet Res. 2018;14(1):30. doi: 10.1186/s12917-018-1360-0
  27. Yeager MP, Guyre CA, Sites BD, et al. The Stress Hormone Cortisol Enhances Interferon-υ-Mediated Proinflammatory Responses of Human Immune Cells. Anesth Analg. 2018;127(2):556–563. doi: 10.1213/ANE.0000000000003481
  28. Logatkina AV, Nikiforov VS, Bondar SS, et al. Relationship between the expression of angiotensin II receptors type 1 and vasoactive regulators in arterial hypertension. Cardiosomatics. 2020;11(3):16–21. (In Russ). doi: 10.26442/22217185.2020.3.200408
  29. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247–257. doi: 10.1002/emmm.201000080
  30. Pállinger E, Csaba G. A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells. Immunology. 2008;123(4):584–589. doi: 10.1111/j.1365-2567.2007.02731.x
  31. Singh MR, Vigh J, Amberg GC. Angiotensin-II Modulates GABAergic Neurotransmission in the Mouse Substantia Nigra. eNeuro. 2021;8(2):ENEURO.0090-21.2021. doi: 10.1523/ENEURO.0090-21.2021
  32. Pilozzi A, Carro C, Huang X. Roles of β-Endorphin in Stress, Behavior, Neuroinflammation, and Brain Energy Metabolism. Int J Mol Sci. 2020;22(1):338. doi: 10.3390/ijms22010338
  33. Severino P, D'Amato A, Pucci M, et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int J Mol Sci. 2020;21(21):8118. doi: 10.3390/ijms21218118

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relationships between the studied factors in patients with coronary artery disease (original drawing).

Download (96KB)
3. direction of regulation

Download (880B)
4. influence of the factor on the functional activity of the corresponding MNC populations

Download (1KB)
5. nfluence of the factor on the regulation of gene expression and/or intracellular processes

Download (1KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies