Exploring the impact of gut microbiota on epilepsy pathogenesis in Krushinsky–Molodkina rats
- Authors: Bidzhiev A.Z.1, Kraeva L.A.1,2, Ivlev A.P.3, Goncharova A.R.1,2, Bazhanova E.D.3
-
Affiliations:
- St. Petersburg Pasteur Institute
- Military Medical Academy named after S.M. Kirov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Issue: Vol 15, No 6 (2025)
- Pages: 1080-1086
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/380243
- DOI: https://doi.org/10.15789/2220-7619-ETI-17934
- ID: 380243
Cite item
Full Text
Abstract
The gut–brain axis represents a bidirectional communication network that integrates neural, endocrine, and immune pathways with intestinal microbiota-derived signals. Disruption of this system, often resulting from gut microbiota dysbiosis, has been increasingly associated with neurological and psychiatric disorders, including depression, Alzheimer’s disease, and Parkinson’s disease. Understanding a crosstalk between host genetics, microbiota composition, and neuroinflammatory processes is therefore crucial for elucidating the mechanisms underlying brain health and disease. In the present study, we investigated gut microbiota composition in two genetically distinct rat Wistar and Krushinsky–Molodkina (KM) strains, and further assessed the effects of kindling-induced epileptogenesis and associated neuroinflammation on the KM microbiota. Our analyses revealed notable inter-group alterations in microbial composition. In particular, Enterococcus hirae abundance differed significantly between Wistar and KM control rats, while Streptococcus hyointestinalis exhibited changes between the KM control and KM kindling groups. Furthermore, we observed a reduced relative abundance of Lactobacillus murinus and Lactobacillus reuteri in KM control rats compared with both Wistar and KM kindling animals. In parallel, we observed altered expression of NF-κB p65 in the temporal lobe white matter. Specifically, Wistar vs KM control rats displayed lower NF-κB p65 expression, whereas KM kindling rats showed reduced expression compared to the KM control group. Such alterations in NF-kB p65 expression correlate with observed shifts in abundance of Lactobacillus murinus and Lactobacillus reuteri, suggesting a link between microbiota composition and neuroinflammatory processes. These findings provide deeper insight into the multifaceted interplay between host genetic background, neuroinflammation, and gut microbial composition. The results suggest that differences in bacterial taxa, particularly within Lactobacillus species, may be linked to NF-κB-mediated processes in the brain, thereby shaping the pathophysiological landscape of neurological disorders. Further investigations are required to better understand the complex crosstalk between host genetics, brain and gut microbiota, and their implication for health and disease.
About the authors
Alim Z. Bidzhiev
St. Petersburg Pasteur Institute
Author for correspondence.
Email: alimbj09@gmail.com
Junior Researcher, Laboratory of Medical Bacteriology
Russian Federation, St. PetersburgL. A. Kraeva
St. Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov
Email: alimbj09@gmail.com
DSc (Medicine), Associate Professor, Head of the Laboratory of Medical Bacteriology, Professor of the Department of Microbiology
Russian Federation, St. Peterburg; St. PeterburgA. P. Ivlev
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: alimbj09@gmail.com
Junior Researcher, Laboratory of Comparative Biochemistry of Cellular Functions
Russian Federation, St. PetersburgA. R. Goncharova
St. Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov
Email: alimbj09@gmail.com
Junior Researcher, Laboratory of Medical Bacteriology, Department
of Medical Microbiology and Molecular Epidemiology, Pediatric
Research and Clinical Center for Infectious Diseases
E. D. Bazhanova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: alimbj09@gmail.com
DSc (Medicine), Lead Researcher, Laboratory of Comparative Biochemistry of Cellular Functions
Russian Federation, St. PetersburgReferences
- Бажанова Е.Д., Козлов А.А. Механизмы апоптоза при фармакорезистентной эпилепсии // Журнал неврологии и психиатрии им. С.С. Корсакова. 2022. Т. 122, № 5. С. 43–50. [Bazhanova E.D, Kozlov A.A. Mechanisms of apoptosis in drug-resistant epilepsy. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry, 2022, vol. 122, no. 5, pp. 43–50. (In Russ.)] doi: 10.17116/jnevro202212205143
- Bagheri S., Heydari A., Alinaghipour A., Salami M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav., 2019, vol. 95, pp. 43–50. doi: 10.1016/j.yebeh.2019.03.038
- Bercik P., Collins S.M. The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, vol. 817, pp. 279–289. doi: 10.1007/978-1-4939-0897-4_13
- Borre Y.E., Moloney R.D., Clarke G., Dinan T.G., Cryan J.F. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv. Exp. Med. Biol., 2014, vol. 817, pp. 373–403. doi: 10.1007/978-1-4939-0897-4_17
- Cattaneo A., Cattane N., Galluzzi S., Provasi S., Lopizzo N., Festari C., Ferrari C., Guerra U.P., Paghera B., Muscio C., Bianchetti A., Volta G.D., Turla M., Cotelli M.S., Gennuso M., Prelle A., Zanetti O., Lussignoli G., Mirabile D., Bellandi D., Gentile S., Belotti G., Villani D., Harach T., Bolmont T., Padovani A., Boccardi M., Frisoni G.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, vol. 49, pp. 60–68. doi: 10.1016/j.neurobiolaging.2016.08.019
- Chen Y., Li R., Chang Q., Dong Z., Yang H., Xu C. Lactobacillus bulgaricus or Lactobacillus rhamnosus suppresses NF-κB signaling pathway and protects against AFB1-induced hepatitis: A novel potential preventive strategy for aflatoxicosis? Toxins, 2019, vol. 11, no. 1: 17. doi: 10.3390/toxins11010017
- Fröhlich E.E., Farzi A., Mayerhofer R., Reichmann F., Jačan A., Wagner B., Zinser E., Bordag N., Magnes C., Fröhlich E., Kashofer K., Gorkiewicz G., Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav. Immun., 2016, vol. 56, pp. 140–155. doi: 10.1016/j.bbi.2016.02.020
- Fung T.C. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol. Dis., 2020, vol. 136: 104714. doi: 10.1016/j.nbd.2019.104714
- Gómez-Eguílaz M., Ramón-Trapero J.L., Pérez-Martínez L., Blanco J.R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef. Microbes, 2018, vol. 9, no. 6, pp. 875–881. doi: 10.3920/BM2018.0018
- Hofer U. Microbiome: pro-inflammatory Prevotella? Nat. Rev. Microbiol., 2014, vol. 12, no. 1: 5. doi: 10.1038/nrmicro3180
- Houser M.C., Tansey M.G. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis., 2017, vol. 3: 3. doi: 10.1038/s41531-016-0002-0
- Khan I., Ullah N., Zha L., Bai Y., Khan A., Zhao T., Che T., Zhang C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens, 2019, vol. 8, no. 3: 126. doi: 10.3390/pathogens8030126
- Kim S.L., Choi H.S., Ko Y.C., Yun B.S., Lee D.S. 5-Hydroxymaltol derived from beetroot juice through Lactobacillus fermentation suppresses inflammatory effect and oxidant stress via regulating NF-kB, MAPKs pathway and NRF2/HO-1 expression. Antioxidants, 2021, vol. 10, no. 8: 1324. doi: 10.3390/antiox10081324
- Kong L., Chen J., Ji X., Qin Q., Yang H., Liu D., Li D., Sun M. Alcoholic fatty liver disease inhibited the co-expression of Fmo5 and PPARα to activate the NF-κB signaling pathway, thereby reducing liver injury via inducing gut microbiota disturbance. J. Exp. Clin. Cancer Res., 2021, vol. 40, no. 1: 18. doi: 10.1186/s13046-020-01782-w
- Kouchaki E., Tamtaji O.R., Salami M., Bahmani F., Daneshvar Kakhaki R., Akbari E., Tajabadi-Ebrahimi M., Jafari P., Asemi Z. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2017, vol. 36, no. 5, pp. 1245–1249. doi: 10.1016/j.clnu.2016.08.015
- Li H., Wang Y., Zhao C., Liu J., Zhang L., Li A. Fecal transplantation can alleviate tic severity in a Tourette syndrome mouse model by modulating intestinal flora and promoting serotonin secretion. Chin. Med. J., 2022, vol. 135, no. 6, pp. 707–713. doi: 10.1097/CM9.0000000000001885
- Liu L., Huh J.R., Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine, 2022, vol. 77: 103908. doi: 10.1016/j.ebiom.2022.103908
- Mao J., Qi S., Cui Y., Dou X., Luo X.M., Liu J., Zhu T., Ma Y., Wang H. Lactobacillus rhamnosus GG attenuates lipopolysaccharide-induced inflammation and barrier dysfunction by regulating MAPK/NF-κB signaling and modulating metabolome in the piglet intestine. J. Nutr., 2020, vol. 150, no. 5, pp. 1313–1323. doi: 10.1093/jn/nxaa009
- Moradi K., Ashraf-Ganjouei A., Tavolinejad H., Bagheri S., Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, vol. 106: 110091. doi: 10.1016/j.pnpbp.2020.110091
- Peng A., Qiu X., Lai W., Li W., Zhang L., Zhu X., He S., Duan J., Chen L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res., 2018, vol. 147, pp. 102–107. doi: 10.1016/j.eplepsyres.2018.09.013
- Qiu X., Zhang M., Yang X., Hong N., Yu C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J. Crohns Colitis, 2013, vol. 7, no. 11: e558-e568. doi: 10.1016/j.crohns.2013.04.002
- Romijn J.A., Corssmit E.P., Havekes L.M., Pijl H. Gut-brain axis. Curr. Opin. Clin. Nutr. Metab. Care, 2008, vol. 11, no. 4, pp. 518–521. doi: 10.1097/MCO.0b013e328302c9b0
- Rothhammer V., Borucki D.M., Tjon E.C., Takenaka M.C., Chao C.C., Ardura-Fabregat A., de Lima K.A., Gutiérrez-Vázquez C., Hewson P., Staszewski O., Blain M., Healy L., Neziraj T., Borio M., Wheeler M., Dragin L.L., Laplaud D.A., Antel J., Alvarez J.I., Prinz M., Quintana F.J. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, vol. 557, no. 7707, pp. 724–728. doi: 10.1038/s41586-018-0119-x
- Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA., 2010, vol. 107, no. 27, pp. 12204–12209. doi: 10.1073/pnas.0909122107
- Rutsch A., Kantsjö J.B., Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol., 2020, vol. 11: 604179. doi: 10.3389/fimmu.2020.604179
- Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Ter Horst R., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., Fu J., Joosten L.A.B., Zhernakova A., Huttenhower C., Wijmenga C., Netea M.G., Xavier R.J. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 2016, vol. 167, no. 4, pp. 1125–1136. doi: 10.1016/j.cell.2016.10.020
- Secher T., Kassem S., Benamar M., Bernard I., Boury M., Barreau F., Oswald E., Saoudi A. Oral Administration of the Probiotic Strain Escherichia coli Nissle 1917 Reduces Susceptibility to Neuroinflammation and Repairs Experimental Autoimmune Encephalomyelitis-Induced Intestinal Barrier Dysfunction. Front. Immunol., 2017, vol. 8: 1096. doi: 10.3389/fimmu.2017.01096
- Serra D., Almeida L.M., Dinis T.C.P. The Impact of Chronic Intestinal Inflammation on Brain Disorders: the Microbiota-Gut-Brain Axis. Mol. Neurobiol., 2019, vol. 56, no. 10, pp. 6941–6951. doi: 10.1007/s12035-019-1572-8
- Sundman M.H., Chen N.K., Subbian V., Chou Y.H. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav. Immun., 2017, vol. 66, pp. 31–44. doi: 10.1016/j.bbi.2017.05.009
- Surina N.M., Fedotova I.B., Nikolaev G.M., Grechenko V.V., Gankovskaya L.V., Ogurtsova A.D., Poletaeva I.I. Neuroinflammation in Pathogenesis of Audiogenic Epilepsy: Altered Proinflammatory Cytokine Levels in the Rats of Krushinsky–Molodkina Seizure-Prone Strain. Biochemistry, 2023, vol. 88, no. 4, pp. 481–490. doi: 10.1134/S0006297923040041
- Tankou S.K., Regev K., Healy B.C., Cox L.M., Tjon E., Kivisakk P., Vanande I.P., Cook S., Gandhi R., Glanz B., Stankiewicz J., Weiner H.L. Investigation of probiotics in multiple sclerosis. Mult. Scler., 2018, vol. 24, no. 1, pp. 58–63. doi: 10.1177/1352458517737390
- Vos P., Garrity G., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.H., Whitman W.B. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes. Springer, New York, NY, 2009, pp. 464–513.
Supplementary files

