Exploring the impact of gut microbiota on epilepsy pathogenesis in Krushinsky–Molodkina rats

Cover Page

Cite item

Full Text

Abstract

The gut–brain axis represents a bidirectional communication network that integrates neural, endocrine, and immune pathways with intestinal microbiota-derived signals. Disruption of this system, often resulting from gut microbiota dysbiosis, has been increasingly associated with neurological and psychiatric disorders, including depression, Alzheimer’s disease, and Parkinson’s disease. Understanding a crosstalk between host genetics, microbiota composition, and neuroinflammatory processes is therefore crucial for elucidating the mechanisms underlying brain health and disease. In the present study, we investigated gut microbiota composition in two genetically distinct rat Wistar and Krushinsky–Molodkina (KM) strains, and further assessed the effects of kindling-induced epileptogenesis and associated neuroinflammation on the KM microbiota. Our analyses revealed notable inter-group alterations in microbial composition. In particular, Enterococcus hirae abundance differed significantly between Wistar and KM control rats, while Streptococcus hyointestinalis exhibited changes between the KM control and KM kindling groups. Furthermore, we observed a reduced relative abundance of Lactobacillus murinus and Lactobacillus reuteri in KM control rats compared with both Wistar and KM kindling animals. In parallel, we observed altered expression of NF-κB p65 in the temporal lobe white matter. Specifically, Wistar vs KM control rats displayed lower NF-κB p65 expression, whereas KM kindling rats showed reduced expression compared to the KM control group. Such alterations in NF-kB p65 expression correlate with observed shifts in abundance of Lactobacillus murinus and Lactobacillus reuteri, suggesting a link between microbiota composition and neuroinflammatory processes. These findings provide deeper insight into the multifaceted interplay between host genetic background, neuroinflammation, and gut microbial composition. The results suggest that differences in bacterial taxa, particularly within Lactobacillus species, may be linked to NF-κB-mediated processes in the brain, thereby shaping the pathophysiological landscape of neurological disorders. Further investigations are required to better understand the complex crosstalk between host genetics, brain and gut microbiota, and their implication for health and disease.

About the authors

Alim Z. Bidzhiev

St. Petersburg Pasteur Institute

Author for correspondence.
Email: alimbj09@gmail.com

Junior Researcher, Laboratory of Medical Bacteriology

Russian Federation, St. Petersburg

L. A. Kraeva

St. Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov

Email: alimbj09@gmail.com

DSc (Medicine), Associate Professor, Head of the Laboratory of Medical Bacteriology, Professor of the Department of Microbiology

Russian Federation, St. Peterburg; St. Peterburg

A. P. Ivlev

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: alimbj09@gmail.com

Junior Researcher, Laboratory of Comparative Biochemistry of Cellular Functions

Russian Federation, St. Petersburg

A. R. Goncharova

St. Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov

Email: alimbj09@gmail.com

Junior Researcher, Laboratory of Medical Bacteriology, Department
of Medical Microbiology and Molecular Epidemiology, Pediatric
Research and Clinical Center for Infectious Diseases

Russian Federation, St. Peterburg; St. Peterburg

E. D. Bazhanova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: alimbj09@gmail.com

DSc (Medicine), Lead Researcher, Laboratory of Comparative Biochemistry of Cellular Functions

Russian Federation, St. Petersburg

References

  1. Бажанова Е.Д., Козлов А.А. Механизмы апоптоза при фармакорезистентной эпилепсии // Журнал неврологии и психиатрии им. С.С. Корсакова. 2022. Т. 122, № 5. С. 43–50. [Bazhanova E.D, Kozlov A.A. Mechanisms of apoptosis in drug-resistant epilepsy. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry, 2022, vol. 122, no. 5, pp. 43–50. (In Russ.)] doi: 10.17116/jnevro202212205143
  2. Bagheri S., Heydari A., Alinaghipour A., Salami M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav., 2019, vol. 95, pp. 43–50. doi: 10.1016/j.yebeh.2019.03.038
  3. Bercik P., Collins S.M. The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, vol. 817, pp. 279–289. doi: 10.1007/978-1-4939-0897-4_13
  4. Borre Y.E., Moloney R.D., Clarke G., Dinan T.G., Cryan J.F. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv. Exp. Med. Biol., 2014, vol. 817, pp. 373–403. doi: 10.1007/978-1-4939-0897-4_17
  5. Cattaneo A., Cattane N., Galluzzi S., Provasi S., Lopizzo N., Festari C., Ferrari C., Guerra U.P., Paghera B., Muscio C., Bianchetti A., Volta G.D., Turla M., Cotelli M.S., Gennuso M., Prelle A., Zanetti O., Lussignoli G., Mirabile D., Bellandi D., Gentile S., Belotti G., Villani D., Harach T., Bolmont T., Padovani A., Boccardi M., Frisoni G.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, vol. 49, pp. 60–68. doi: 10.1016/j.neurobiolaging.2016.08.019
  6. Chen Y., Li R., Chang Q., Dong Z., Yang H., Xu C. Lactobacillus bulgaricus or Lactobacillus rhamnosus suppresses NF-κB signaling pathway and protects against AFB1-induced hepatitis: A novel potential preventive strategy for aflatoxicosis? Toxins, 2019, vol. 11, no. 1: 17. doi: 10.3390/toxins11010017
  7. Fröhlich E.E., Farzi A., Mayerhofer R., Reichmann F., Jačan A., Wagner B., Zinser E., Bordag N., Magnes C., Fröhlich E., Kashofer K., Gorkiewicz G., Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav. Immun., 2016, vol. 56, pp. 140–155. doi: 10.1016/j.bbi.2016.02.020
  8. Fung T.C. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol. Dis., 2020, vol. 136: 104714. doi: 10.1016/j.nbd.2019.104714
  9. Gómez-Eguílaz M., Ramón-Trapero J.L., Pérez-Martínez L., Blanco J.R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef. Microbes, 2018, vol. 9, no. 6, pp. 875–881. doi: 10.3920/BM2018.0018
  10. Hofer U. Microbiome: pro-inflammatory Prevotella? Nat. Rev. Microbiol., 2014, vol. 12, no. 1: 5. doi: 10.1038/nrmicro3180
  11. Houser M.C., Tansey M.G. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis., 2017, vol. 3: 3. doi: 10.1038/s41531-016-0002-0
  12. Khan I., Ullah N., Zha L., Bai Y., Khan A., Zhao T., Che T., Zhang C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens, 2019, vol. 8, no. 3: 126. doi: 10.3390/pathogens8030126
  13. Kim S.L., Choi H.S., Ko Y.C., Yun B.S., Lee D.S. 5-Hydroxymaltol derived from beetroot juice through Lactobacillus fermentation suppresses inflammatory effect and oxidant stress via regulating NF-kB, MAPKs pathway and NRF2/HO-1 expression. Antioxidants, 2021, vol. 10, no. 8: 1324. doi: 10.3390/antiox10081324
  14. Kong L., Chen J., Ji X., Qin Q., Yang H., Liu D., Li D., Sun M. Alcoholic fatty liver disease inhibited the co-expression of Fmo5 and PPARα to activate the NF-κB signaling pathway, thereby reducing liver injury via inducing gut microbiota disturbance. J. Exp. Clin. Cancer Res., 2021, vol. 40, no. 1: 18. doi: 10.1186/s13046-020-01782-w
  15. Kouchaki E., Tamtaji O.R., Salami M., Bahmani F., Daneshvar Kakhaki R., Akbari E., Tajabadi-Ebrahimi M., Jafari P., Asemi Z. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2017, vol. 36, no. 5, pp. 1245–1249. doi: 10.1016/j.clnu.2016.08.015
  16. Li H., Wang Y., Zhao C., Liu J., Zhang L., Li A. Fecal transplantation can alleviate tic severity in a Tourette syndrome mouse model by modulating intestinal flora and promoting serotonin secretion. Chin. Med. J., 2022, vol. 135, no. 6, pp. 707–713. doi: 10.1097/CM9.0000000000001885
  17. Liu L., Huh J.R., Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine, 2022, vol. 77: 103908. doi: 10.1016/j.ebiom.2022.103908
  18. Mao J., Qi S., Cui Y., Dou X., Luo X.M., Liu J., Zhu T., Ma Y., Wang H. Lactobacillus rhamnosus GG attenuates lipopolysaccharide-induced inflammation and barrier dysfunction by regulating MAPK/NF-κB signaling and modulating metabolome in the piglet intestine. J. Nutr., 2020, vol. 150, no. 5, pp. 1313–1323. doi: 10.1093/jn/nxaa009
  19. Moradi K., Ashraf-Ganjouei A., Tavolinejad H., Bagheri S., Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, vol. 106: 110091. doi: 10.1016/j.pnpbp.2020.110091
  20. Peng A., Qiu X., Lai W., Li W., Zhang L., Zhu X., He S., Duan J., Chen L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res., 2018, vol. 147, pp. 102–107. doi: 10.1016/j.eplepsyres.2018.09.013
  21. Qiu X., Zhang M., Yang X., Hong N., Yu C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J. Crohns Colitis, 2013, vol. 7, no. 11: e558-e568. doi: 10.1016/j.crohns.2013.04.002
  22. Romijn J.A., Corssmit E.P., Havekes L.M., Pijl H. Gut-brain axis. Curr. Opin. Clin. Nutr. Metab. Care, 2008, vol. 11, no. 4, pp. 518–521. doi: 10.1097/MCO.0b013e328302c9b0
  23. Rothhammer V., Borucki D.M., Tjon E.C., Takenaka M.C., Chao C.C., Ardura-Fabregat A., de Lima K.A., Gutiérrez-Vázquez C., Hewson P., Staszewski O., Blain M., Healy L., Neziraj T., Borio M., Wheeler M., Dragin L.L., Laplaud D.A., Antel J., Alvarez J.I., Prinz M., Quintana F.J. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, vol. 557, no. 7707, pp. 724–728. doi: 10.1038/s41586-018-0119-x
  24. Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA., 2010, vol. 107, no. 27, pp. 12204–12209. doi: 10.1073/pnas.0909122107
  25. Rutsch A., Kantsjö J.B., Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol., 2020, vol. 11: 604179. doi: 10.3389/fimmu.2020.604179
  26. Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Ter Horst R., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., Fu J., Joosten L.A.B., Zhernakova A., Huttenhower C., Wijmenga C., Netea M.G., Xavier R.J. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 2016, vol. 167, no. 4, pp. 1125–1136. doi: 10.1016/j.cell.2016.10.020
  27. Secher T., Kassem S., Benamar M., Bernard I., Boury M., Barreau F., Oswald E., Saoudi A. Oral Administration of the Probiotic Strain Escherichia coli Nissle 1917 Reduces Susceptibility to Neuroinflammation and Repairs Experimental Autoimmune Encephalomyelitis-Induced Intestinal Barrier Dysfunction. Front. Immunol., 2017, vol. 8: 1096. doi: 10.3389/fimmu.2017.01096
  28. Serra D., Almeida L.M., Dinis T.C.P. The Impact of Chronic Intestinal Inflammation on Brain Disorders: the Microbiota-Gut-Brain Axis. Mol. Neurobiol., 2019, vol. 56, no. 10, pp. 6941–6951. doi: 10.1007/s12035-019-1572-8
  29. Sundman M.H., Chen N.K., Subbian V., Chou Y.H. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav. Immun., 2017, vol. 66, pp. 31–44. doi: 10.1016/j.bbi.2017.05.009
  30. Surina N.M., Fedotova I.B., Nikolaev G.M., Grechenko V.V., Gankovskaya L.V., Ogurtsova A.D., Poletaeva I.I. Neuroinflammation in Pathogenesis of Audiogenic Epilepsy: Altered Proinflammatory Cytokine Levels in the Rats of Krushinsky–Molodkina Seizure-Prone Strain. Biochemistry, 2023, vol. 88, no. 4, pp. 481–490. doi: 10.1134/S0006297923040041
  31. Tankou S.K., Regev K., Healy B.C., Cox L.M., Tjon E., Kivisakk P., Vanande I.P., Cook S., Gandhi R., Glanz B., Stankiewicz J., Weiner H.L. Investigation of probiotics in multiple sclerosis. Mult. Scler., 2018, vol. 24, no. 1, pp. 58–63. doi: 10.1177/1352458517737390
  32. Vos P., Garrity G., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.H., Whitman W.B. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes. Springer, New York, NY, 2009, pp. 464–513.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bidzhiev A.Z., Kraeva L.A., Ivlev A.P., Goncharova A.R., Bazhanova E.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).