Immunopathogenesis of neurosyphilis: clinical management perspectives

Cover Page

Cite item

Full Text

Abstract

This review provides a comprehensive analysis on the immunopathogenesis of neurosyphilis and discusses the related clinical perspectives. Neurosyphilis remains one of the most complex and variable forms of syphilitic infection, driven by the interaction between T. pallidum and host innate and adaptive immune cells leading to chronic inflammation and damage to the nervous system. The article highlights three major relevant areas. 1) Cellular and molecular mechanisms. The role of different T-lymphocyte subsets, cytokine cascades, macrophages, and microglia in shaping persistent inflammation, disrupting immune control, and contributing to neurodegenerative processes is examined. In particular, it emphasizes the imbalance between pro- and anti-inflammatory cytokines, as well as the strategies by which the pathogen evades immune surveillance. 2) Clinical manifestations and diagnostic approaches. Current knowledge of the wide clinical spectrum of neurosyphilis is summarized, ranging from asymptomatic forms to severe progressive neurological involvement. Special attention is given to biomarkers, including cerebrospinal fluid indices and immunological tests, as well as instrumental methods such as MRI, serological, and molecular assays, which help refine disease staging and assess activity. 3) Therapeutic opportunities and prospective targets. Existing antibiotic regimens are discussed, along with the challenges of limited efficacy and potential antibiotic resistance. The review further explores the potential of immunotherapy and combined strategies aimed at restoring immune control and reducing central nervous system inflammation. Overall, the review integrates fundamental aspects of immunopathogenesis with practical clinical considerations. By linking cellular and molecular insights with diagnostic and therapeutic perspectives, it provides a relevant resource for both clinicians and researchers primarily engaged in the search for innovative therapeutic strategies against neurosyphilis.

About the authors

Vladimir A. Bekhalo

N.F. Gamaleya Federal Research Center for Epidemiology and Microbiology

Author for correspondence.
Email: nearmedic_uc@mail.ru

PhD (Biology), Leading Researcher, Laboratory of Immunity Regulation and Immunological Tolerance

Russian Federation, Moscow

O. K. Loseva

Russian Biotechnological University (ROSBIOTECH)

Email: nearmedic_uc@mail.ru

DSc (Medicine), Professor, Professor of the Department of Skin and Venereal Diseases with a Course in Cosmetology of the Medical Institute of Continuing Education

Russian Federation, Moscow

References

  1. Поздние формы сифилиса с симптомами и без симптомов. Под ред. О.К. Лосевой. М.: ГЭОТАР-Медиа, 2023. 184 с. [Late forms of syphilis with and without symptoms. Ed. by Loseva O.K. Moscow: GEOTAR-Media, 2023. 184 p. (In Russ.)]
  2. Пономарева М.В., Левчик Н.К., Зильберберг Н.В. Неспецифический интратекальный синтез иммуноглобулинов у пациентов с сифилитической инфекцией // Инфекция и иммунитет. 2023. Т. 13, № 2. С. 309–318. [Ponomareva M.V., Levchik N.K., Zilberberg N.V. Nonspecific intrathecal synthesis of immunoglobulins in patients with syphilitic infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 309–318. (In Russ.)] doi: 10.15789/2220-7619-INI-2032
  3. Рахматулина М.Р., Мелехина Л.Е., Новоселова Е.Ю. Ретроспективный анализ заболеваемости сифилисом в Российской Федерации в 2009–2023 гг. и тенденции динамического развития эпидемиологического процесса // Вестник дерматологии и венерологии. 2025. Т. 101, № 1. С. 7–27. [Rakhmatulina M.R., Melekhina L.E., Novoselova E.Yu. Retrospective analysis of syphilis incidence in the Russian Federation in 2009–2023 and trends of epidemiological process dynamics. Vestnik dermatologii i venerologii = Vestnik Dermatologii i Venerologii, 2025, vol. 101, no. 1, pp. 7–27. (In Russ.)] doi: 10.25208/vdv16851
  4. Рахматулина М.Р., Порсохонова Д.Ф., Новоселова Е.Ю., Иноятов А.Ш. Эпидемиологические и клинические аспекты заболеваемости сифилисом в Российской Федерации и Республике Узбекистан: сравнительный анализ // Вестник дерматологии и венерологии. 2025. Т. 101, № 2. С. 23–38. [Rakhmatulina M.R., Porsohonova D.F., Novoselova E.Yu., Inoyatov A.Sh. Epidemiological and clinical aspects of syphilis incidence in the Russian Federation and the Republic of Uzbekistan: comparative analysis. Vestnik dermatologii i venerologii = Vestnik Dermatologii i Venerologii, 2025, vol. 101, no. 2, pp. 23–38. (In Russ.)] doi: 10.25208/vdv16860
  5. Ajabshir D., Jimenez Garcia J.G., Fernandez C., Izquierdo-Pretel G. Unveiling the Mimicker: A Case Report of Ocular Neurosyphilis. Cureus, 2024, vol. 16, no. 12: e75364. doi: 10.7759/cureus.75364
  6. Alberto C., Lambeng N., Deffert C., Breville G., Gayet-Ageron A., Lalive P., Calmy A., Coste A., Papadimitriou-Olivgeris M., Braun D., Lienhard R., Bosshard P.P., Fontao L., Toutous Trellu L. Multicentric evaluation of a specific intrathecal anti-Treponema pallidum IgG index as a diagnostic biomarker of neurosyphilis: results from a retro-prospective case-control study. Sex. Transm. Infect., 2024, vol. 100, no. 2, pp. 63–69. doi: 10.1136/sextrans-2023-055913
  7. Ávila-Nieto C., Pedreño-López N., Mitjà O., Clotet B., Blanco J., Carrillo J. Syphilis vaccine: challenges, controversies and opportunities. Front. Immunol., 2023, vol. 14: 1126170. doi: 10.3389/fimmu.2023.1126170
  8. Barthel L., Hetze S., Teuber-Hanselmann S., Chapot V., Sure U. Syphilitic gummata in the central nervous system: A narrative review and case report about a noteworthy clinical manifestation. Microorganisms, 2021, vol. 9, no. 5: 906. doi: 10.3390/microorganisms9050906
  9. Boog G.H.P., Lopes J.V.Z., Mahler J.V., Solti M., Kawahara L.T., Teng A.K., Munhoz J.V.T., Levin A.S. Diagnostic tools for neurosyphilis: a systematic review. BMC Infect. Dis., 2021, vol. 21, no. 1: 568. doi: 10.1186/s12879-021-06264-8
  10. Buitrago-Garcia D., Martí-Carvajal A.J., Jimenez A., Conterno L.O., Pardo R. Antibiotic therapy for adults with neurosyphilis. Cochrane Database Syst. Rev., 2019, vol. 5: CD011399. doi: 10.1002/14651858.CD011399.pub2
  11. Caroppo P., Villa C., Del Sole A., Bernardi G., Carradori S., Tiraboschi P., Giaccone G., Prioni S. Neurosyphilis mimicking behavioral variant of frontotemporal dementia in a 59-year-old man. Cogn. Behav. Neurol., 2022, vol. 35, no. 2, pp. 140–146. doi: 10.1097/WNN.0000000000000299
  12. Catalano A.A., Yoon J., Fertuzinhos S., Reisert H., Walsh H., Kosana P., Wilson M., Gisslen M., Zetterberg H., Marra C.M., Farhadian S.F. Neurosyphilis is characterized by a compartmentalized and robust neuroimmune response but not by neuronal injury. Med (N.Y.), 2024, vol. 5, no. 4, pp. 321–334.e3. doi: 10.1016/j.medj.2024.02.005
  13. Chen J.L., Tessema R., Emami-Naeini P., Lim M.C. A vascular syphilitic iris lesion. Am. J. Ophthalmol. Case Rep., 2023, vol. 31: 101858. doi: 10.1016/j.ajoc.2023.101858
  14. Chen H., Li J.J., Guan C.S., Xue M., Xing Y.X., Xie R.M. Investigation of gray matter changes using voxel-based morphometry in HIV-negative patients with general paresis of the insane. Neuropsychiatr. Dis. Treat., 2024, vol. 20, pp. 2529–2539. doi: 10.2147/NDT.S484214
  15. Chen X. Research advances in clinical strategies and preclinical models for syphilis relapse. Infect. Drug Resist., 2025, vol. 18, pp. 3395–3407. doi: 10.2147/IDR.S531545
  16. Corrêa D.G., de Souza S.R., Freddi T.A.L., Fonseca A.P.A., Dos Santos R.Q., Hygino da Cruz L.C. Jr. Imaging features of neurosyphilis. J. Neuroradiol., 2023, vol. 50, no. 2, pp. 241–252. doi: 10.1016/j.neurad.2023.01.003
  17. Ding D., Gao J., Zhang W., Xu D. The diagnostic performance of laboratory tests of neurosyphilis: a systematic review and network meta-analysis. Eur. Neurol., 2023, vol. 86, no. 6, pp. 418–429. doi: 10.1159/000531341
  18. Drago F., Javor S., Parodi A. Relevance in biology and mechanisms of immune and treatment evasion of Treponema pallidum. G. Ital. Dermatol. Venereol., 2019, vol. 154, no. 5, pp. 573–580. doi: 10.23736/S0392-0488.17.05830-8
  19. Du F.Z., Zhang X., Zhang R.L., Wang Q.Q. CARE-NS, a research strategy for neurosyphilis. Front. Med., 2023, vol. 9: 1040133. doi: 10.3389/fmed.2022.1040133
  20. Du F.Z., Wu M.Z., Zhang X., Zhang R.L., Wang Q.Q. Ceftriaxone compared with penicillin G for the treatment of neurosyphilis: study protocol for a multicenter randomized controlled trial. Trials, 2022, vol. 23, no. 1: 835. doi: 10.1186/s13063-022-06769-w
  21. Du F.Z., Zhang X., Zheng X.L., Zhang R.L., Wang Q.Q. Cerebrospinal fluid CXCL13 concentration for diagnosis of neurosyphilis: a systematic review and meta-analysis. BMJ Open, 2024, vol. 14, no. 5: e078527. doi: 10.1136/bmjopen-2023-078527
  22. EU sees ‘troubling surge’ in sexually transmitted diseases. Medical Xpress, 2024, March. Retrieved August 27, 2025. URL: https://medicalxpress.com/news/2024-03-eu-surge-sexually-transmitted-diseases.html
  23. European Centre for Disease Prevention and Control. Syphilis. In: Annual Epidemiological Report for 2023. Stockholm: ECDC, 2025.
  24. Fadel A., Hussain H., Hernandez R.J., Clichy Silva A.M., Estil-Las A.A., Hamad M., Saadoon Z.F., Naseer L., Sultan W.C., Sultan C., Schnepp T., Jayakumar A.R. Mechanisms of neurosyphilis-induced dementia: insights into pathophysiology. Neurol. Int., 2024, vol. 16, no. 6, pp. 1653–1665. doi: 10.3390/neurolint16060120
  25. Fang Y., Wu H., Liu G., Li Z., Wang D., Ning Y., Pan S., Hu Y. Secondary immunoreaction in patients with neurosyphilis and its relevance to clinical outcomes. Front. Neurol., 2023, vol. 14: 1201452. doi: 10.3389/fneur.2023.1201452
  26. Frater J.L. The usefulness of cerebrospinal fluid white blood cell count in neurosyphilis. Eur. Neurol., 2023, vol. 86, no. 6, pp. 404–406. doi: 10.1159/000534724
  27. Funayama M., Kuramochi S., Kudo S. Neurosyphilis initially misdiagnosed as behavioral variant frontotemporal dementia: life-changing differential diagnosis. J. Alzheimers Dis. Rep., 2023, vol. 7, no. 1, pp. 1077–1083. doi: 10.3233/ADR-230107
  28. Gao Z.X., Gou Y., Liu X.Q., Peng L.W. Advances in laboratory diagnostic methods for cerebrospinal fluid testing for neurosyphilis. Front. Public Health, 2022, vol. 10: 1030480. doi: 10.3389/fpubh.2022.1030480
  29. Guan H., Di X., Li M., Yu N., Cai R., Chen C., Peng J., Xia Z., Wei H. Lymphocyte to monocyte ratio and lymphocyte to neutrophil ratio in neurosyphilis may affect the response to therapy and diagnostic efficacy. Sci. Rep., 2025, vol. 15, no. 1: 11980. doi: 10.1038/s41598-025-94927-w
  30. Gudowska-Sawczuk M., Mroczko B. Chemokine ligand 13 (CXCL13) in neuroborreliosis and neurosyphilis as selected spirochetal neurological diseases: a review of its diagnostic significance. Int. J. Mol. Sci., 2020, vol. 21, no. 8: 2927. doi: 10.3390/ijms21082927
  31. Guo T., Ma J., Sun J., Xu W., Cong H., Wei Y., Ma Y., Dong Q., Kou Y., Yin L., Zhang X., Chang H., Wang H. Soluble TREM2 is a potential biomarker for the severity of primary angiitis of the CNS. Front. Immunol., 2022, vol. 13: 963373. doi: 10.3389/fimmu.2022.963373
  32. Hamill M.M., Ghanem K.G., Tuddenham S. State-of-the-art review: neurosyphilis. Clin. Infect. Dis., 2024, vol. 78, no. 5, pp. e57-e68. doi: 10.1093/cid/ciad437
  33. He C., Shang X., Liu W., Hang S., Chen J., Ci C. Combination of the neutrophil to lymphocyte ratio and serum toluidine red unheated serum test titer as a predictor of neurosyphilis in HIV-negative patients. Exp. Ther. Med., 2021, vol. 21, no. 3: 185. doi: 10.3892/etm.2021.9616
  34. Huang X., Ying S., Luo L., Li L., Li D., Xie Y. Intrathecal immunoglobulin synthesis and its role in patients with neurosyphilis. Front. Public Health, 2022, vol. 10: 1008595. doi: 10.3389/fpubh.2022.1008595
  35. Jaiswal A.K., Rodrigues Gomes L.G., Ferreira Maciel de Oliveira A., de Castro Soares S., Azevedo V. The critical role of penicillin in syphilis treatment and emerging resistance challenges. Diseases, 2025, vol. 13, no. 2: 41. doi: 10.3390/diseases13020041
  36. Janier M., Unemo M., Dupin N., Tiplica G.S., Potočnik M., Patel R. 2020 European guideline on the management of syphilis. J. Eur. Acad. Dermatol. Venereol., 2021, vol. 35, no. 3, pp. 574–588. doi: 10.1111/jdv.16946
  37. Kaminiów K., Kiołbasa M., Pastuszczak M. The significance of the cell-mediated host immune response in syphilis. Microorganisms, 2024, vol. 12, no. 12: 2580. doi: 10.3390/microorganisms12122580
  38. Kaur B., Khanna D. A narrative review of the many psychiatric manifestations of neurosyphilis: the great imitator. Cureus, 2023, vol. 15, no. 9: e44866. doi: 10.7759/cureus.44866
  39. Ke W.J., Tso L.S., Li D.D. Editorial: Neurosyphilis: epidemiology, clinical manifestations, diagnosis, immunology and treatment. Front. Med., 2023, vol. 10: 1191113. doi: 10.3389/fmed.2023.1191113
  40. Li J., Ma J., Liu M., Li M., Zhang M., Yin W., Wu M., Li X., Zhang Q., Zhang H., Zheng H., Mao C., Sun J., Wang W., Lyu W., Yue X., Weng W., Li J., Chen F., Zhu Y., Leng L. Large-scale proteome profiling identifies biomarkers associated with suspected neurosyphilis diagnosis. Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger.), 2024, vol. 11, no. 16: e2307744. doi: 10.1002/advs.202307744
  41. Li W., Chang H., Wu W., Xu D., Jiang M., Gao J., Huang Y., Xu Y., Yin L., Zhang X. Increased CSF soluble TREM2 concentration in patients with neurosyphilis. Front. Neurol., 2020, vol. 11: 62. doi: 10.3389/fneur.2020.00062
  42. Li W., Wu W., Chang H., Jiang M., Gao J., Xu Y., Xu D., Yin L., Zhang X. Cerebrospinal fluid cytokines in patients with neurosyphilis: the significance of interleukin-10 for the disease. Biomed. Res. Int., 2020: 3812671. doi: 10.1155/2020/3812671
  43. Li X.X., Zhang J., Wang Z.Y., Chen S.Q., Zhou W.F., Wang T.T., Man X.Y., Zheng M. Increased CCL24 and CXCL7 levels in the cerebrospinal fluid of patients with neurosyphilis. J. Clin. Lab. Anal., 2020, vol. 34, no. 9: e23366. doi: 10.1002/jcla.23366
  44. Liu A., Giacani L., Hawley K.L., Cameron C.E., Seña A.C., Konda K.A., Radolf J.D., Klausner J.D. New pathways in syphilis vaccine development. Sex. Transm. Dis., 2024, vol. 51, no. 11, pp. e49-e53. doi: 10.1097/OLQ.0000000000002050
  45. Liu Z., Zhang X., Lin T., Zhang F., Guo Z., Liu C. Treponema pallidum inhibits CD4+ T-cell proliferation through METAP2: insights from Mendelian randomization analysis. AMB Express, 2025, vol. 15: 126. doi: 10.1186/s13568-025-01940-3
  46. Liu Z., Zhang X., Xiong S., Huang S., Ding X., Xu M., Yao J., Liu S., Zhao F. Endothelial dysfunction of syphilis: Pathogenesis. J. Eur. Acad. Dermatol. Venereol., 2024, vol. 38, no. 8, pp. 1478–1490. doi: 10.1111/jdv.19899
  47. Luo Y., Xie Y., Xiao Y. Laboratory diagnostic tools for syphilis: current status and future prospects. Front. Cell. Infect. Microbiol., 2021, vol. 10: 574806. doi: 10.3389/fcimb.2020.574806
  48. Malla S., Shahreen N., Saha R. Immunometabolism at the crossroads of infection: mechanistic and systems-level perspectives from host and pathogen. arXiv, 2025, arXiv:2506.02236v1. URL: https://arxiv.org/abs/2506.02236
  49. Miao R., Song C., Zhang W., Ma X., Zhang Y., Huang Y. A retrospective review of nine cases of atypical neurosyphilis. Front. Med., 2025, vol. 12: 1603596. doi: 10.3389/fmed.2025.1603596
  50. Mills K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol., 2023, vol. 23, no. 1, pp. 38–54. doi: 10.1038/s41577-022-00746-9
  51. Mizoguchi T., Hara M., Nakajima H. Neurosyphilis presenting as autoimmune limbic encephalitis: a case report and literature review. Medicine, 2022, vol. 101, no. 33: e30062. doi: 10.1097/MD.0000000000030062
  52. Mu L., Rong Y., Xin Y.J., Zhang H., Xu Z. Research progress on Th17/Treg cell imbalance in epileptic seizures. J. Inflamm. Res., 2025, vol. 18, pp. 7769–7779. doi: 10.2147/JIR.S524814
  53. Naveed M., Ibrahim S., Aziz T., Asim M., Majeed M.N., Khan A.A., El Hadi Mohamed R.A., Alwethaynani M.S., Al-Joufi F.A., Fallatah D. Computational drug design for neurosyphilis disease by targeting phosphoglycerate kinase in Treponema pallidum with enhanced binding affinity and reduced toxicity. Sci. Rep., 2025, vol. 15, no. 1: 10311. doi: 10.1038/s41598-025-94054-6
  54. Oska N., Saad M., Tokko H. Hypertensive disc edema or ocular syphilis? A case report of the great masquerader. Case Rep. Ophthalmol., 2025, vol. 16, no. 1, pp. 346–352. doi: 10.1159/000545491
  55. Otani M., Rowley J., Grankov V., Kuchukhidze G., Bivol S., WHO European Region non-EU/EEA STI Surveillance network. Sexually transmitted infections in the non-European Union and European Economic Area of the World Health Organization European Region 2021-2023. BMC Public Health, 2025, vol. 25, no. 1: 1545. doi: 10.1186/s12889-025-22630-6
  56. Patel S.S., Blum A.L., Morgan R.T., Piper B.J., Rodriguez A.J., VanVarick R.E. Analysis of neurosyphilis imaging methods and treatment: a focused review. Cureus, 2024, vol. 16, no. 11: e72976. doi: 10.7759/cureus.72976
  57. Pospíšilová P., Bosák J., Hrala M., Krbková L., Vrbová E., Šmajs D. Resistance to ceftriaxone and penicillin G among contemporary syphilis strains confirmed by natural in vitro mutagenesis. Commun. Med., 2025, vol. 5, no. 1: 224. doi: 10.1038/s43856-025-00948-x
  58. Pospíšilová P., Fedrová P., Vrbová E., Hennelly C.M., Aghakhanian F., Hawley K.L., Bettin E.B., Davenport T.C., Bruisten S.M., Zondag H.C.A., Grange P.A., Dupin N., Arora N., Noda A.A., Seña A.C., Caimano M.J., Salazar J.C., Juliano J.J., Moody M.A., Radolf J.D., Parr J.B., Šmajs D. Analysis of Treponema pallidum subsp. pallidum predicted outer membrane proteins (OMPeomes) in 21 clinical samples: variant sequences are predominantly surface-exposed. mSphere, 2025, advance online publication. doi: 10.1128/msphere.00213-25
  59. Rosenberg C.R., Pasadhika S. A vascularized iris mass in ocular syphilis: a case report and review of literature. Ocul. Immunol. Inflamm., 2024, vol. 32, no. 8, pp. 1648–1654. doi: 10.1080/09273948.2023.2276298
  60. Rosset F., Celoria V., Delmonte S., Mastorino L., Sciamarrelli N., Boskovic S., Ribero S., Quaglino P. The epidemiology of syphilis worldwide in the last decade. J. Clin. Med., 2025, vol. 14, no. 15: 5308. doi: 10.3390/jcm14155308
  61. Salauddin M., Bhattacharyya D., Samanta I., Saha S., Xue M., Hossain M.G., Zheng C. Role of TLRs as signaling cascades to combat infectious diseases: a review. Cell. Mol. Life Sci., 2025, vol. 82, no. 1: 122. doi: 10.1007/s00018-025-05631-x
  62. Sanpei Y., Hanazono A., Funasaka M., Yasuda K., Takahashi Y., Sugawara M. Markedly elevated IgG index: a key to differentiating neurosyphilis from autoimmune limbic encephalitis. Intern. Med., 2025, vol. 64, no. 12, pp. 1906–1910. doi: 10.2169/internalmedicine.4625-24
  63. Sexually transmissible infections on the rise, syphilis triples in a decade: Report. MedicalXpress, 2023, December 19. Retrieved August 27, 2025. URL: https://medicalxpress.com/news/2023-12-sexuallytransmissible-infections-syphilis-triples.html
  64. Shi Q., Gutierrez R.A., Bhat M.A. Microglia, Trem2, and neurodegeneration. Neuroscientist, 2025, vol. 31, no. 2, pp. 159–176. doi: 10.1177/10738584241254118
  65. Shrimpton M., Malhotra A. Neurosyphilis presenting as limbic encephalitis. BMJ Case Rep., 2023, vol. 16, no. 12: e258794. doi: 10.1136/bcr-2023-258794
  66. Shuja S.H., Naeem U., Eqbal F., Shuja M.H. Ceftriaxone: A plausible intervention for treating neurosyphilis? Ann. Med. Surg., 2022, vol. 82: 104662. doi: 10.1016/j.amsu.2022.104662
  67. Skalnaya A., Fominykh V., Ivashchenko R., Averchenkov D., Grazhdantseva L., Frigo N., Negasheva E., Dolya O., Brylev L., Guekht A. Neurosyphilis in the modern era: literature review and case series. J. Clin. Neurosci., 2019, vol. 69, pp. 67–73. doi: 10.1016/j.jocn.2019.08.033
  68. Sweitzer S., Duncan J.A., Seña A.C. Update on syphilis diagnostics. Curr. Opin. Infect. Dis., 2025, vol. 38, no. 1, pp. 44–53. doi: 10.1097/QCO.0000000000001073
  69. The US hasn’t seen syphilis numbers this high since 1950. Other STD rates are down or flat. Medical Xpress, 2024, January 30. Retrieved August 27, 2025. URL: https://medicalxpress.com/news/2024-01-hasnt-syphilis-high-std-flat.html
  70. Villarreal D.D., Babalola C.M. Expanding horizons in syphilis treatment: Challenges, advances, and opportunities for alternative antibiotics. Curr. HIV/AIDS Rep., 2025, vol. 22, no. 1: 22. doi: 10.1007/s11904-025-00725-4
  71. Wang S., Gu W., Cao Y., Zheng H., Zhang L., Guo X., Chen W., Luo X. Comparison of the clinical efficacy of penicillin and ceftriaxone sodium in the treatment of neurosyphilis with psychiatric symptoms. World J. Psychiatry Ment. Health Res., 2022, vol. 5, no. 1: 1030.
  72. Waugh S., Cameron C.E. Syphilis vaccine development: Aligning vaccine design with manufacturing requirements. Hum. Vaccin. Immunother., 2024, vol. 20, no. 1: 2399915. doi: 10.1080/21645515.2024.2399915
  73. Workowski K.A., Bachmann L.H., Chan P.A., Johnston C.M., Muzny C.A., Park I., Reno H., Zenilman J.M., Bolan G.A. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm. Rep., 2021, vol. 70, no. 4, pp. 1–187. doi: 10.15585/mmwr.rr7004a1
  74. World Health Organization. Implementation of the global health sector strategies on HIV, viral hepatitis and sexually transmitted infections, 2022–2030. Geneva: WHO, 2022. URL: https://iris.who.int/bitstream/handle/789240094925-eng.pdf
  75. Wu S., Ye F., Wang Y., Li D. Neurosyphilis: Insights into its pathogenesis, susceptibility, diagnosis, treatment, and prevention. Front. Neurol., 2024, vol. 14: 1340321. doi: 10.3389/fneur.2023.1340321
  76. Wudel B., Purewal R., Hatchette T.F., Stein D., Morshed M., Minion J., Vallée M., Hayden K., Hamula C. Canadian Public Health Laboratory Network (CPHLN) Diagnostic Recommendations for Neurosyphilis in Canada. J. Assoc. Med. Microbiol. Infect. Dis. Can., 2024, vol. 9, no. 4, pp. 219–228. doi: 10.3138/jammi-2024-0022
  77. Xiong S., Liu Z., Zhang X., Huang S., Ding X., Zhou J., Yao J., Li W., Liu S., Zhao F. Resurgence of syphilis: Focusing on emerging clinical strategies and preclinical models. J. Transl. Med., 2023, vol. 21, no. 1: 917. doi: 10.1186/s12967-023-04685-4
  78. Yang Y., Gu X., Zhu L., Cheng Y., Lu H., Guan Z., Shi M., Ni L., Peng R.R., Zhao W., Wu J., Qi T., Long F., Chai Z., Gong W., Ye M., Zhou P. Clinical spectrum of late symptomatic neurosyphilis in China: an 11-year retrospective study. Sex. Transm. Infect., 2024, vol. 100, no. 8, pp. 477–483. doi: 10.1136/sextrans-2024-056117
  79. Yang L., Fu Y., Li S., Liu C., Liu D. Analysis of Treponema pallidum DNA and CXCL13 in cerebrospinal fluid in HIV-negative syphilis patients. Infect. Drug Resist., 2022, vol. 15, pp. 7791–7798. doi: 10.2147/IDR.S394581
  80. Yu Q., Li W., Mo X., Tan F., Yang L. Case report: Microglia composition and immune response in an immunocompetent patient with an intracranial syphilitic gumma. Front. Neurol., 2021, vol. 11: 615434. doi: 10.3389/fneur.2020.615434
  81. Zezetko A., Stallings M., Pastis I. Deciphering the Great Imitator: Syphilis and Neurosyphilis. Cureus, 2024, vol. 16, no. 2: e54563. doi: 10.7759/cureus.54563
  82. Zhang Q., Ma J., Zhou J., Zhang H., Li M., Gong H., Wang Y., Zheng H., Li J., Leng L. A study on the inflammatory response of the brain in neurosyphilis. Adv. Sci., 2025, vol. 12, no. 5: e2406971. doi: 10.1002/advs.202406971
  83. Zhao W., Luo H. Investigation of the role of interleukin 27 in the immune regulation of Treg and Th17 cells in neurosyphilis patients. Folia Neuropathol., 2023, vol. 61, no. 4, pp. 387–395. doi: 10.5114/fn.2023.132099
  84. Zheng Y.W., Zheng X.Q., Guo Y.F., Xie J.W., Wang M., Xu Q.Y., Zhu X.Z., Lin L.R. Characteristics of immune response and pathogen tissue dissemination during progressive Treponema pallidum infection: Insights from humanized mice. Scand. J. Immunol., 2025, vol. 101, no. 3: e70005. doi: 10.1111/sji.70005
  85. Zheng Y., Xu L. Bidirectional crosstalk between microglia and serotonin signaling in neuroinflammation and CNS disorders. Front. Immunol., 2025, vol. 16: 1646740. doi: 10.3389/fimmu.2025.1646740
  86. Zhou J., Zhang H., Tang K., Liu R., Li J. An updated review of recent advances in neurosyphilis. Front. Med., 2022, vol. 9: 800383. doi: 10.3389/fmed.2022.800383
  87. Zhou Y., Xie Y., Xu M. Potential mechanisms of Treponema pallidum breaching the blood-brain barrier. Biomed. Pharmacother., 2024, vol. 180: 117478. doi: 10.1016/j.biopha.2024.117478

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bekhalo V.A., Loseva O.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).