CSF/serum ratios: modern approach to assess intrathecal response
- Authors: Deomkina A.M.1, Sayfullin R.F.1, Shakaryan A.K.2, Shamsheva O.V.1
-
Affiliations:
- Pirogov Russian National Research Medical University
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
- Issue: Vol 15, No 4 (2025)
- Pages: 625-634
- Section: REVIEWS
- URL: https://journals.rcsi.science/2220-7619/article/view/352112
- DOI: https://doi.org/10.15789/2220-7619-CSR-17927
- ID: 352112
Cite item
Full Text
Abstract
CSF/serum ratios are the quotients of protein concentrations between the cerebrospinal fluid and blood serum. This method provides an objective assessment of proteins amount and origin in the cerebrospinal fluid. The cerebrospinal fluid protein composition consists of blood proteins passing through the blood-brain barrier and those synthesized within the central nervous system (intrathecally). Increased concentrations of proteins such as specific antibodies or autoantibodies in cerebrospinal fluid do not always mirror intrathecal synthesis or the presence of a pathological process in the intrathecal space. Elevated protein levels in the cerebrospinal fluid may be due to the higher blood protein influx through the blood-brain barrier. Quantification of CSF/Serum ratios according to German liquor specialist Hansotto Reiber allows distinguishing between blood and brain protein origin. This method is recognized as relevant for distinguishing between blood-derived and brain-derived protein fractions by the German Society for Liquor Diagnostics and Clinical Neurochemistry (Deutsche Gesellschaft für Liquordiagnostik und Klinische Neurochemie e.V.). The review is based on analyzing main literature databases (PubMed, CyberLeninka, Google Scholar, Scopus) and the latest publications on liquor diagnostics. Principles of CSF/Serum ratios, specific antibody indices calculation, and Reibergram structure are described. The classification of intrathecal inflammation and disease-related data patterns of immunoglobulin synthesis typical for diseases of the central and peripheral nervous system are presented. Thus, this literature review provides a detailed insight into the general principles of the modern approach for assessing cerebrospinal fluid protein composition and improves intrathecal humoral response comprehension. Additionally, the latest data on intrathecal immune response features in multiple sclerosis, neuromyelitis optica spectrum disorders, encephalitis associated with anti-MOG, anti-NMDAR antibodies, rheumatological diseases with CNS involvement, and neuroinfections are summarized.
Full Text
##article.viewOnOriginalSite##About the authors
Alexandra M. Deomkina
Pirogov Russian National Research Medical University
Author for correspondence.
Email: sasha.deomkina@mail.ru
Assistant Professor, Department of Infectious Diseases in Children
Russian Federation, MoscowR. F. Sayfullin
Pirogov Russian National Research Medical University
Email: sasha.deomkina@mail.ru
PhD (Medicine), Associate Professor, Department of Infectious Diseases in Children
Russian Federation, MoscowA. K. Shakaryan
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
Email: sasha.deomkina@mail.ru
Assistant Professor, Department of Infectious Diseases in Children, Researcher in the Clinical Department, Institute of Poliomyelitis
Russian Federation, Moscow; MoscowO. V. Shamsheva
Pirogov Russian National Research Medical University
Email: sasha.deomkina@mail.ru
DSc (Medicine), Professor, Head of the Department of Infectious Diseases in Children
Russian Federation, MoscowReferences
- Зверева Н.Н., Шакарян А.К., Сайфуллин Р.Ф., Россина А.Л., Ртищев А.Ю., Белялетдинова И.Х. Современное состояние проблемы иксодового клещевого боррелиоза (болезни Лайма) у детей // Детские инфекции. 2017. Т. 16, № 1. С. 27–31. [Zvereva N.N., Shakaryan A.K., Sayfullin R.F., Rossina A.L., Rtishchev A.Yu., Belyaletdinovа I.Kh. Current State of Tick-borne Borreliosis (Lyme Disease) in Children. Detskie Infektsii = Children’s Infections, 2017, vol. 16, no. 1, pp. 27–31. (In Russ.)] doi: 10.22627/2072-8107-2017-16-1-27-31
- Мошникова А.Н., Максимчук В.К., Лапин С.В., Назаров В.Д., Суркова Е.А., Новиков С.А., Макшаков Г.С., Крутецкая И.Ю., Краснов В.С., Кушнир Я.Б., Неофидов Н.А., Тотолян Н.А., Скоромец А.А., Евдошенко Е.П., Тотолян Арег А. Диагностическая значимость интратекального синтеза иммуноглобулинов против нейротропных вирусов (MRZ-реакция) в диагностике рассеянного склероза // Инфекция и иммунитет. 2019. Т. 9, № 5–6. С. 703–712. [Moshnikova A.N., Maksimchuk V.K., Lapin S.V., Nazarov V.D., Surkova E.A., Novikov S.A., Makshakov G.S., Krutetskaya I.Yu., Krasnov V.S., Kushnir Ya.B., Neofidov N.A., Totolian N.A., Skoromets A.A., Evdoshenko E.P., Totolian Areg A. Diagnostic significance of intrathecally synthesized immunoglobulins against neurotropic viruses (MRZ-reaction) in diagnosis of multiple sclerosis. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 5–6, pp. 703–712. (In Russ.)] doi: 10.15789/2220-7619-2019-5-6-703-712
- Пономарева М.В., Левчик Н.К., Зильберберг Н.В. Неспецифический интратекальный синтез иммуноглобулинов у пациентов с cифилитической инфекцией // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 309–318. [Ponomareva M.V., Levchik N.K., Zilberberg N.V. Intrathecal nonspecific immunoglobulin synthesis in syphilitic infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 309–318. (In Russ.)] doi: 10.15789/2220-7619-INI-2032
- Alberto C., Deffert C., Lambeng N., Breville G., Gayet-Ageron A., Lalive P., Toutous Trellu L., Fontao L. Intrathecal Synthesis Index of Specific Anti-Treponema IgG: a New Tool for the Diagnosis of Neurosyphilis. Microbiol. Spectr., 2022, vol. 10, no. 1: e0147721. doi: 10.1128/spectrum.01477-21
- Armangue T., Capobianco M., de Chalus A., Laetitia G., Deiva K.; E.U. Paediatric MOG Consortium. E.U. Paediatric MOG Consortium Consensus: Part 3 — Biomarkers of Paediatric Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorders. Eur. J. Paediatr. Neurol., 2020, vol. 29, pp. 22–31. doi: 10.1016/j.ejpn.2020.11.001
- Auer M., Hegen H., Zeileis A., Deisenhammer F. Quantitation of Intrathecal Immunoglobulin Synthesis – a New Empirical Formula. Eur. J. Neurol., 2016, vol. 23, no. 4, pp. 713–721. doi: 10.1111/ene.12924
- Ausgewählte Methoden der Liquordiagnostik und Klinischen Neurochemie. Germany: Deutsche Gesellschaft für Liquordiagnostik und Klinische Neurochemie e.V., 2020. 100 p. https://www.dgln.de/methodenkatalog
- Banwell B., Bennett J.L., Marignier R., Kim H.J., Brilot F., Flanagan E.P., Ramanathan S., Waters P., Tenembaum S., Graves J.S., Chitnis T., Brandt A.U., Hemingway C., Neuteboom R., Pandit L., Reindl M., Saiz A., Sato D.K., Rostasy K., Paul F., Pittock S.J., Fujihara K., Palace J. Diagnosis of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: International MOGAD Panel Proposed Criteria. Lancet Neurol., 2023, vol. 22, no. 3, pp. 268–282. doi: 10.1016/S1474-4422(22)00431-8
- Bertram D., Tsaktanis T., Berthele A., Korn T. The Role of Intrathecal Free Light Chains Kappa for the Detection of Autoimmune Encephalitis in Subacute Onset Neuropsychiatric Syndromes. Sci. Rep., 2023, vol. 13, no. 1: 17224. doi: 10.1038/s41598-023-44427-6
- Castellazzi M., Candeloro R., Pugliatti M., Govoni M., Silvagni E., Bortoluzzi A. Cerebrospinal Fluid Analysis in Rheumatological Diseases with Neuropsychiatric Complications and Manifestations: a Narrative Review. Diagnostics (Basel), 2024, vol. 14, no. 3: 242. doi: 10.3390/diagnostics14030242
- Czarniak N., Kamińska J., Matowicka-Karna J., Koper-Lenkiewicz O.M. Cerebrospinal Fluid-Basic Concepts Review. Biomedicines, 2023, vol. 11, no. 5: 1461. doi: 10.3390/biomedicines11051461
- Deisenhammer F., Bartos A., Egg R., Gilhus N.E., Giovannoni G., Rauer S., Sellebjerg F.; EFNS Task Force. Guidelines on Routine Cerebrospinal Fluid Analysis. Report from an EFNS Task Force. Eur. J. Neurol., 2006, vol. 13, no. 9, pp. 913–922. doi: 10.1111/j.1468-1331.2006.01493.x
- Dorta Contreras A.J. Intrathecal Synthesis of Immunoglobulins in Neisseria Meningitidis and Echovirus 6 Meningoencephalitis. J. Mol. Neurosci., 1999, vol. 12, no. 2, pp. 81–87. doi: 10.1007/BF02736922
- Dorta-Contreras A.J., Agüero-Valdés E., Escobar-Pérez X., Noris-García E., Ferrá-Valdés M. [Intrathecal Humoral Immune Response in Pediatric Patients with Meningoencephalitis due to Coxsackie B5]. Rev. Neurol., 1999, vol. 28, no. 8, pp. 739–741. doi: 10.33588/rn.2808.99020
- Dorta-Contreras A., Mieté F.A. Dysfunction of the Blood-Cerebrospinal Fluid Barrier in Bacterial Meningitis. J. Trop. Pediatr., 1996, vol. 42, no. 6, pp. 372–373. doi: 10.1093/tropej/42.6.372
- Feki S., Gargouri S., Mejdoub S., Dammak M., Hachicha H., Hadiji O., Feki L., Hammami A., Mhiri C., Karray H., Masmoudi H. The Intrathecal Polyspecific Antiviral Immune Response (MRZ Reaction): a Potential Cerebrospinal Fluid Marker for Multiple Sclerosis Diagnosis. J. Neuroimmunol., 2018, vol. 321, pp. 66–71. doi: 10.1016/j.jneuroim.2018.05.015
- Felgenhauer K., Reiber H. The Diagnostic Significance of Antibody Specificity Indices in Multiple Sclerosis and Herpes Virus Induced Diseases of the Nervous System. Clin. Investig., 1992, vol. 70, no. 1, pp. 28–37. doi: 10.1007/BF00422934
- Hottenrott T., Dersch R., Berger B., Rauer S., Eckenweiler M., Huzly D., Stich O. The Intrathecal, Polyspecific Antiviral Immune Response in Neurosarcoidosis, Acute Disseminated Encephalomyelitis and Autoimmune Encephalitis Compared to Multiple Sclerosis in a Tertiary Hospital Cohort. Fluids Barriers CNS, 2015, vol. 12, no. 27. doi: 10.1186/s12987-015-0024-8
- Hümmert M.W., Jendretzky K.F., Fricke K., Gingele M., Ratuszny D., Möhn N., Trebst C., Skripuletz T., Gingele S., Sühs K.W. The Relevance of NMDA Receptor Antibody-Specific Index for Diagnosis and Prognosis in Patients with Anti-NMDA Receptor Encephalitis. Sci. Rep., 2023, vol. 13, no. 1: 12696. doi: 10.1038/s41598-023-38462-6
- Jarius S., Aktas O., Ayzenberg I., Bellmann-Strobl J., Berthele A., Giglhuber K., Häußler V., Havla J., Hellwig K., Hümmert M.W., Kleiter I., Klotz L., Krumbholz M., Kümpfel T., Paul F., Ringelstein M., Ruprecht K., Senel M., Stellmann J.P., Bergh F.T., Tumani H., Wildemann B., Trebst C.; Neuromyelitis Optica Study Group (NEMOS). Update on the Diagnosis and Treatment of Neuromyelitis Optica Spectrum Disorders (NMOSD) – Revised Recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and Differential Diagnosis. J. Neurol., 2023, vol. 270, no. 7, pp. 3341–3368. doi: 10.1007/s00415-023-11634-0
- Jarius S., Eichhorn P., Franciotta D., Petereit H.F., Akman-Demir G., Wick M., Wildemann B. The MRZ Reaction as a Highly Specific Marker of Multiple Sclerosis: Re-evaluation and Structured Review of the Literature. J. Neurol., 2017, vol. 264, no. 3, pp. 453–466. doi: 10.1007/s00415-016-8360-4
- Jarius S., Franciotta D., Bergamaschi R., Rauer S., Wandinger K.P., Petereit H.F., Maurer M., Tumani H., Vincent A., Eichhorn P., Wildemann B., Wick M., Voltz R. Polyspecific, Antiviral Immune Response Distinguishes Multiple Sclerosis and Neuromyelitis Optica. J. Neurol. Neurosurg. Psychiatry, 2008, vol. 79, no. 10, pp. 1134–1136. doi: 10.1136/jnnp.2007.133330
- Jarius S., Lechner C., Wendel E.M., Baumann M., Breu M., Schimmel M., Karenfort M., Marina A.D., Merkenschlager A., Thiels C., Blaschek A., Salandin M., Leiz S., Leypoldt F., Pschibul A., Hackenberg A., Hahn A., Syrbe S., Strautmanis J., Häusler M., Krieg P., Eisenkölbl A., Stoffels J., Eckenweiler M., Ayzenberg I., Haas J., Höftberger R., Kleiter I., Korporal-Kuhnke M., Ringelstein M., Ruprecht K., Siebert N., Schanda K., Aktas O., Paul F., Reindl M., Wildemann B., Rostásy K.; in cooperation with the BIOMARKER Study Group and the Neuromyelitis Optica Study Group (NEMOS). Cerebrospinal Fluid Findings in Patients with Myelin Oligodendrocyte Glycoprotein (MOG) Antibodies. Part 2: Results from 108 Lumbar Punctures in 80 Pediatric Patients. J. Neuroinflammation, 2020, vol. 17, no. 1: 262. doi: 10.1186/s12974-020-01825-1
- Jarius S., Paul F., Franciotta D., Ruprecht K., Ringelstein M., Bergamaschi R., Rommer P., Kleiter I., Stich O., Reuss R., Rauer S., Zettl U.K., Wandinger K.P., Melms A., Aktas O., Kristoferitsch W., Wildemann B. Cerebrospinal Fluid Findings in Aquaporin-4 Antibody Positive Neuromyelitis Optica: Results from 211 Lumbar Punctures. J. Neurol. Sci., 2011, vol. 306, no. 1–2, pp. 82–90. doi: 10.1016/j.jns.2011.03.038
- Jarius S., Ruprecht K., Kleiter I., Borisow N., Asgari N., Pitarokoili K., Pache F., Stich O., Beume L.A., Hümmert M.W., Trebst C., Ringelstein M., Aktas O., Winkelmann A., Buttmann M., Schwarz A., Zimmermann H., Brandt A.U., Franciotta D., Capobianco M., Kuchling J., Haas J., Korporal-Kuhnke M., Lillevang S.T., Fechner K., Schanda K., Paul F., Wildemann B., Reindl M.; in cooperation with the Neuromyelitis Optica Study Group (NEMOS). MOG-IgG in NMO and Related Disorders: a Multicenter Study of 50 Patients. Part 1: Frequency, Syndrome Specificity, Influence of Disease Activity, Long-Term Course, Association with AQP4-IgG, and Origin. J. Neuroinflammation, 2016, vol. 13, no. 1: 279. doi: 10.1186/s12974-016-0717-1
- Jarius S., Wilken D., Haas J., Ruprecht K., Komorowski L., Wildemann B. Parvovirus B19 and Mumps Virus Antibodies Are Major Constituents of the Intrathecal Immune Response in European Patients with MS and Increase the Diagnostic Sensitivity and Discriminatory Power of the MRZ Reaction. J. Neurol., 2021, vol. 268, no. 10, pp. 3758–3765. doi: 10.1007/s00415-021-10471-3
- Kang Q., Liao H., Yang L., Fang H., Ning Z., Liao C., Gan S., Wu L. Clinical Analysis of 173 Pediatric Patients with Antibody-Mediated Autoimmune Diseases of the Central Nervous System: a Single-Center Cohort Study. Front. Immunol., 2023, vol. 14: 1140872. doi: 10.3389/fimmu.2023.1140872
- Knudtzen F.C., Nilsson A.C., Skarphedinsson S., Blaabjerg M. False-Positive Anti-NMDA Receptor Antibodies in Severe Case of Lyme Neuroborreliosis. Neurol. Sci., 2020, vol. 41, no. 1, pp. 197–199. doi: 10.1007/s10072-019-04004-0
- Naseri A., Nasiri E., Sahraian M.A., Daneshvar S., Talebi M. Clinical Features of Late-Onset Multiple Sclerosis: a Systematic Review and Meta-analysis. Mult. Scler. Relat. Disord., 2021, vol. 50: 102816. doi: 10.1016/j.msard.2021.102816
- Pache F., Otto C., Wilken D., Lietzow T., Steinhagen K., Grage-Griebenow E., Schindler P., Niederschweiberer M., Wildemann B., Jarius S., Ruprecht K. Broad Analysis of Serum and Intrathecal Antimicrobial Antibodies in Multiple Sclerosis Underscores Unique Role of Epstein-Barr Virus. Neurol. Neuroimmunol. Neuroinflamm., 2025, vol. 12, no. 1: e200332. doi: 10.1212/NXI.0000000000200332
- Prüss H. Autoantibodies in Neurological Disease. Nat. Rev. Immunol., 2021, vol. 21, no. 12, pp. 798–813. doi: 10.1038/s41577-021-00543-w
- Reiber H. Blood-Cerebrospinal Fluid (CSF) Barrier Dysfunction Means Reduced CSF Flow Not Barrier Leakage – Conclusions from CSF Protein Data. Arq. Neuropsiquiatr., 2021, vol. 79, no. 1, pp. 56–67. doi: 10.1590/0004-282X-anp-2020-0094
- Reiber H. Cerebrospinal Fluid Data Compilation and Knowledge-Based Interpretation of Bacterial, Viral, Parasitic, Oncological, Chronic Inflammatory and Demyelinating Diseases. Diagnostic Patterns Not to Be Missed in Neurology and Psychiatry. Arq. Neuropsiquiatr., 2016, vol. 74, no. 4, pp. 337–350. doi: 10.1590/0004-282X20160044
- Reiber H. Flow Rate of Cerebrospinal Fluid (CSF) — a Concept Common to Normal Blood-CSF Barrier Function and to Dysfunction in Neurological Diseases. J. Neurol. Sci., 1994, vol. 122, no. 2, pp. 189–203. doi: 10.1016/0022-510x(94)90298-4
- Reiber H. Knowledge-Base for Interpretation of Cerebrospinal Fluid Data Patterns. Essentials in Neurology and Psychiatry. Arq. Neuropsiquiatr., 2016, vol. 74, no. 6, pp. 501–512. doi: 10.1590/0004-282X20160066
- Reiber H. Liquordiagnostik in der Neurologie: Paradigmenwechsel bei Hirn-Schranken, Immunsystem und chronischen Krankheiten (essentials). Berlin, Germany: Springer, 2023. 75 p. doi: 10.1007/978-3-662-68136-7
- Reiber H. Polyspecific Antibodies without Persisting Antigen in Multiple Sclerosis, Neurolupus and Guillain-Barré Syndrome: Immune Network Connectivity in Chronic Diseases. Arq. Neuropsiquiatr., 2017, vol. 75, no. 8, pp. 580–588. doi: 10.1590/0004-282X20170081
- Reiber H., Felgenhauer K. Protein Transfer at the Blood Cerebrospinal Fluid Barrier and the Quantitation of the Humoral Immune Response within the Central Nervous System. Clin. Chim. Acta, 1987, vol. 163, no. 3, pp. 319–328. doi: 10.1016/0009-8981(87)90250-6
- Reiber H., Peter J.B. Cerebrospinal Fluid Analysis: Disease-Related Data Patterns and Evaluation Programs. J. Neurol. Sci., 2001, vol. 184, no. 2, pp. 101–122. doi: 10.1016/S0022-510X(00)00501-3
- Reiber H., Teut M., Pohl D., Rostasy K.M., Hanefeld F. Paediatric and Adult Multiple Sclerosis: Age-Related Differences and Time Course of the Neuroimmunological Response in Cerebrospinal Fluid. Mult. Scler., 2009, vol. 15, no. 12, pp. 1466–1480. doi: 10.1177/1352458509348418
- Reiber H., Zeman D., Kušnierová P., Mundwiler E., Bernasconi L. Diagnostic Relevance of Free Light Chains in Cerebrospinal Fluid – The Hyperbolic Reference Range for Reliable Data Interpretation in Quotient Diagrams. Clin. Chim. Acta, 2019, vol. 497, pp. 153–162. doi: 10.1016/j.cca.2019.07.027
- Schäffler N., Köpke S., Winkler L., Schippling S., Inglese M., Fischer K., Heesen C. Accuracy of Diagnostic Tests in Multiple Sclerosis — a Systematic Review. Acta Neurol. Scand., 2011, vol. 124, no. 3, pp. 151–164. doi: 10.1111/j.1600-0404.2010.01454.x
- Shamier M.C., Bogers S., Yusuf E., van Splunter M., Ten Berge J.C.E.M., Titulaer M., van Kampen J.J.A., GeurtsvanKessel C.H. The Role of Antibody Indexes in Clinical Virology. Clin. Microbiol. Infect., 2021, vol. 27, no. 9, pp. 1207–1211. doi: 10.1016/j.cmi.2021.03.015
- Venhoff N., Thiel J., Rizzi M., Venhoff A., Rauer S., Endres D., Hentze C., Staniek J., Huzly D., Voll R.E., Salzer U., Hottenrott T. The MRZ-Reaction and Specific Autoantibody Detection for Differentiation of ANA-Positive Multiple Sclerosis from Rheumatic Diseases with Cerebral Involvement. Front. Immunol., 2019, vol. 10: 514. doi: 10.3389/fimmu.2019.00514
- Vlad B., Neidhart S., Hilty M., Ziegler M., Jelcic I. Differentiating Neurosarcoidosis from Multiple Sclerosis Using Combined Analysis of Basic CSF Parameters and MRZ Reaction. Front. Neurol., 2023, vol. 14: 1135392. doi: 10.3389/fneur.2023.1135392
- Vlad B., Reichen I., Neidhart S., Hilty M., Lekaditi D., Heuer C., Eisele A., Ziegler M., Reindl M., Lutterotti A., Regeniter A., Jelcic I. Basic CSF Parameters and MRZ Reaction Help in Differentiating MOG Antibody-Associated Autoimmune Disease versus Multiple Sclerosis. Front. Immunol., 2023, vol. 14: 1237149. doi: 10.3389/fimmu.2023.1237149
- Wildemann B., Oschmann P., Reiber H. Laboratory Diagnosis in Neurology. Stuttgart, Germany: Thieme, 2010. 292 p. doi: 10.1055/b-002-80425
- Zhang X., Hao H., Jin T., Qiu W., Yang H., Xue Q., Yin J., Shi Z., Yu H., Ji X., Sun X., Zeng Q., Liu X., Wang J., Li H., He X., Yang J., Li Y., Liu S., Lau A.Y., Gao F., Hu S., Chu S., Ding D., Zhou H., Li H., Chen X. Cerebrospinal Fluid Oligoclonal Bands in Chinese Patients with Multiple Sclerosis: the Prevalence and Its Association with Clinical Features. Front. Immunol., 2023, vol. 14: 1280020. doi: 10.3389/fimmu.2023.1280020
- Zondra Revendova K., Svub K., Bunganic R., Pelisek O., Volny O., Ganesh A., Bar M., Zeman D., Kušnierová P. A Comparison of Measles-Rubella-Zoster Reaction, Oligoclonal IgG Bands, Oligoclonal Kappa Free Light Chains and Kappa Index in Multiple Sclerosis. Mult. Scler. Relat. Disord., 2024, vol. 81: 105125. doi: 10.1016/j.msard.2023.105125
Supplementary files



