Molecular characterization of PGA gene types A–D among multi-drug resistant strains of Acinetobacter baumannii
- Authors: Supreeta M.1, Kannika Parameshwari K.1, Smiline Girija A.1, Vijayashree Priyadharsini J.1
-
Affiliations:
- Saveetha Institute of Medical and Technical Sciences
- Issue: Vol 15, No 3 (2025)
- Pages: 536-542
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/315134
- DOI: https://doi.org/10.15789/2220-7619-MCO-17785
- ID: 315134
Cite item
Full Text
Abstract
This study aimed to explore the prevalence of Acinetobacter baumannii in clinical settings, its antimicrobial resistance, and biofilm formation ability in ventilator-associated pneumonia (VAP) patients, with a particular focus on the pgaABCD gene locus responsible for biofilm formation. A total of 53 isolates were collected over a 5-month period from patients suffering from pneumonia and lower respiratory tract infections. The isolates were identified, and their drug resistance profiles were evaluated using the VITEK automated system. Biofilm formation ability was assessed using the crystal violet assay. The presence of the pgaABCD gene was confirmed through PCR, and the sequences were analyzed to investigate gene prevalence and mutations. Among the 53 clinical samples, 29 isolates (54.7%) were confirmed as A. baumannii. Biofilm formation was detected in 62.1% of the isolates, with varying levels of biofilm production. All 29 isolates (100%) encoded both the pgaA and pgaD genes, while the pgaB and pgaC genes were present in 93.10% and 89.66% of the isolates, respectively. Multidrug-resistant (MDR) strains were prevalent among the clinical isolates, with high biofilm production ability. Sequencing of the pgaABCD genes revealed mutations contributing to the diversity of biofilm formation. This study emphasizes the strong relationship between the pgaABCD locus and biofilm formation in MDR A. baumannii strains. The high prevalence of biofilm-forming isolates underscores the challenges in treating infections caused by A. baumannii, especially in VAP patients. These findings highlight the need for biofilm-targeted treatment strategies to improve patient outcomes in healthcare settings.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
M. S. Supreeta
Saveetha Institute of Medical and Technical Sciences
Email: 152201022.sdc@saveetha.com
BDS Student, Department of Microbiology, Saveetha Dental College and Hospitals
India, Chennai, Tamil NaduK. Kannika Parameshwari
Saveetha Institute of Medical and Technical Sciences
Email: kannikakannan03@gmail.com
PhD Student, Department of Microbiology, Saveetha Dental College and Hospitals
India, Chennai, Tamil NaduA.S. Smiline Girija
Saveetha Institute of Medical and Technical Sciences
Author for correspondence.
Email: smilinejames25@gmail.com
Professor, Department of Microbiology, Saveetha Dental College and Hospitals
India, Chennai, Tamil NaduJ. Vijayashree Priyadharsini
Saveetha Institute of Medical and Technical Sciences
Email: vijipriya26@gmail.com
Associate Professor, Department of Microbiology, Saveetha Dental College and Hospitals
India, Chennai, Tamil NaduReferences
- Badave G.K., Kulkarni D. Biofilm Producing Multidrug Resistant Acinetobacter baumannii: An Emerging Challenge. J. Clin. Diagn. Res., 2015, vol. 9, no. 1, pp. DC08–DC10. doi: 10.7860/JCDR/2015/11014.5398
- Bardbari A.M., Arabestani M.R., Karami M., Keramat F., Alikhani M.Y., Bagheri K.P. Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microb. Pathog., 2017, vol. 108, pp. 122–128. doi: 10.1016/j.micpath.2017.04.039
- Barenfanger J., Drake C., Kacich G. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J. Clin. Microbiol., 1999, vol. 37, no. 5, pp. 1415–1418. doi: 10.1128/JCM.37.5.1415-1418.1999
- Bassetti M., Welte T., Wunderink R.G. Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair? Crit. Care, 2016, vol. 20, no. 19: 19. doi: 10.1186/s13054-016-1197-5
- Boehm A., Steiner S., Zaehringer F., Casanova A., Hamburger F., Ritz D., Keck W., Ackermann M., Schirmer T., Jenal U. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol. Microbiol., 2009, vol. 72, no. 6, pp. 1500–1516. doi: 10.1111/j.1365-2958.2009.06739.x
- Chang H.C., Chen Y.C., Lin M.C., Liu S.F., Chung Y.H., Su M.C., Fang W.F., Tseng C.C., Lie C.H., Huang K.T., Wang C.C. Mortality risk factors in patients with Acinetobacter baumannii ventilator-associated pneumonia. J. Formos. Med. Assoc., 2011, vol. 110, no. 9, pp. 564–571. doi: 10.1016/j.jfma.2011.07.004
- Choi A.H., Slamti L., Avci F.Y., Pier G.B., Maira-Litrán T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J. Bacteriol., 2009, vol. 191, no. 19, pp. 5953–5963. doi: 10.1128/JB.00647-09
- El-Saed A., Balkhy H.H., Al-Dorzi H.M., Khan R., Rishu A.H., Arabi Y.M. Acinetobacter is the most common pathogen associated with late-onset and recurrent ventilator-associated pneumonia in an adult intensive care unit in Saudi Arabia. Int. J. Infect. Dis., 2013, vol. 17, no. 9, pp. e696–e701. doi: 10.1016/j.ijid.2013.02.004
- Ganesh P.S., Naji Naseef P., Muthusamy R., Sankar S., Gopal R.K., Shankar E.M. Acinetobacter baumannii Virulence Factors and Biofilm Components: Synthesis, Structure, Function, and Inhibitors. In: ESKAPE Pathogens. Detection, Mechanisms and Treatment Strategies. Eds: S. Busi, R. Prasad. Singapore: Springer Nature Singapore Pte Ltd., 2024, pp. 297–315. doi: 10.1007/978-981-99-8799-3_10
- Garnacho-Montero J., Amaya-Villar R. Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr. Opin. Infect. Dis., 2010, vol. 23, no. 4, pp. 332–339. doi: 10.1097/QCO.0b013e32833ae38b
- Girija As.S., Priyadharsini J.V., Paramasivam A. Prevalence of Acb and non-Acb complex in elderly population with urinary tract infection (UTI). Acta Clin. Belg., 2021, vol. 76, no. 2, pp. 106–112. doi: 10.1080/17843286.2019.1669274
- Girija As.S., Priyadharsini J.V. CLSI based antibiogram profile and the detection of MDR and XDR strains of Acinetobacter baumannii isolated from urine samples. Med. J. Islam. Repub. Iran., 2019, vol. 33: 3. doi: 10.34171/mjiri.33.3
- Girija A.S.S. Acinetobacter baumannii as an oro-dental pathogen: a red alert!! J. Appl. Oral Sci., 2024, vol. 32: e20230382. doi: 10.1590/1678-7757-2023-0382
- Huang Y., Zhou Q., Wang W., Huang Q., Liao J., Li J., Long L., Ju T., Zhang Q., Wang H., Xu H., Tu M. Acinetobacter baumannii Ventilator-Associated Pneumonia: Clinical Efficacy of Combined Antimicrobial Therapy and in vitro Drug Sensitivity Test Results. Front. Pharmacol., 2019, vol. 10: 92. doi: 10.3389/fphar.2019.00092
- Ibrahim M.E. Prevalence of Acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Ann. Clin. Microbiol. Antimicrob., 2019, vol. 18: 1. doi: 10.1186/s12941-018-0301-x
- Itoh Y., Rice J.D., Goller C., Pannuri A., Taylor J., Meisner J., Beveridge T.J., Preston J.F. 3rd, Romeo T. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J. Bacteriol., 2008, vol. 190, no. 10, pp. 3670–3680. doi: 10.1128/JB.01920-07
- Kannan K.P., Smiline Girija A.S. Anticandidal effect of cinnamic acid characterized from Cinnamomum cassia bark against the fluconazole resistant strains of Candida. Braz. J. Microbiol., 2024, vol. 3, pp. 189–234. doi: 10.1007/s42770-024-01469-w
- Khanna N., Girija A.S.S., Priyadharsini J.V. Detection of the early putative biofilm marker pgaB among the MDR strains of A. baumannii. Heliyon, 2024, vol. 10, no. 5: e27020. doi: 10.1016/j.heliyon.2024.e27020
- Kropec A., Maira-Litran T., Jefferson K.K., Grout M., Cramton S.E., Götz F., Goldmann D.A., Pier G.B. Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect. Immun., 2005, vol. 73, no. 10, pp. 6868–6876. doi: 10.1128/IAI.73.10.6868-6876.2005
- Lee C.R., Lee J.H., Park M., Park K.S., Bae I.K., Kim Y.B., Cha C.J., Jeong B.C., Lee S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol., 2017, vol. 7: 55. doi: 10.3389/fcimb.2017.00055
- Li Y.J., Pan C.Z., Fang C.Q., Zhao Z.X., Chen H.L., Guo P.H., Zhao Z.W. Pneumonia caused by extensive drug-resistant Acinetobacter baumannii among hospitalized patients: genetic relationships, risk factors and mortality. BMC Infect. Dis., 2017, vol. 17, no. 1: 371. doi: 10.1186/s12879-017-2471-0
- Naseef Pathoor N., Viswanathan A., Wadhwa G., Ganesh P.S. Understanding the biofilm development of Acinetobacter baumannii and novel strategies to combat infection. APMIS, 2024, vol. 132, no. 5, pp. 317–335. doi: 10.1111/apm.13399
- Nhu N.T.K., Lan N.P.H., Campbell J.I., Parry C.M., Thompson C., Tuyen H.T., Hoang N.V.M., Tam P.T.T., Le V.M., Nga T.V.T., Nhu T.D.H., Van Minh P., Nga N.T.T., Thuy C.T., Dung L.T., Yen N.T.T., Van Hao N., Loan H.T., Yen L.M., Nghia H.D.T., Hien T.T., Thwaites L., Thwaites G., Chau N.V.V., Baker S. Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J. Med. Microbiol., 2014, vol. 63, no. 10, pp. 1386–1394. doi: 10.1099/jmm.0.076646-0
- Rello J., Lipman J. Antibiotic prescription for respiratory tract infections in ventilated patients: where are we heading? Intensive Care Med., 2013, vol. 39, no. 9, pp. 1644–1646. doi: 10.1007/s00134-013-2983-z
- Rosenthal V.D., Maki D.G., Jamulitrat S., Medeiros E.A., Todi S.K., Gomez D.Y., Leblebicioglu H., Abu Khader I., Miranda Novales M.G., Berba R., Ramírez Wong F.M., Barkat A., Pino O.R., Dueñas L., Mitrev Z., Bijie H., Gurskis V., Kanj S.S., Mapp T., Hidalgo R.F., Ben Jaballah N., Raka L., Gikas A., Ahmed A., Thu le T.A., Guzmán Siritt M.E.; INICC Members. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003–2008, issued June 2009. Am. J. Infect. Control, 2010, vol. 38, no. 2, pp. 95–104.e2. doi: 10.1016/j.ajic.2009.12.004
- Shelenkov A., Akimkin V., Mikhaylova Y. International Clones of High Risk of Acinetobacter Baumannii-Definitions, History, Properties and Perspectives. Microorganisms, 2023, vol. 11, no. 8: 2115. doi: 10.3390/microorganisms11082115
- Sherif M.M., Elkhatib W.F., Khalaf W.S., Elleboudy N.S., Abdelaziz N.A. Multidrug Resistant Acinetobacter baumannii Biofilms: Evaluation of Phenotypic-Genotypic Association and Susceptibility to Cinnamic and Gallic Acids. Front. Microbiol., 2021, vol. 12: 716627. doi: 10.3389/fmicb.2021.716627
- Suvaithenamudhan S., Ananth S., Mariappan V., Dhayabaran V.V., Parthasarathy S., Ganesh P.S., Shankar E.M. In Silico Evaluation of Bioactive Compounds of Artemisia pallens Targeting the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules, 2022, vol. 27, no. 16: 5188. doi: 10.3390/molecules27165188
- Talbot G.H., Bradley J., Edwards J.E. Jr., Gilbert D., Scheld M., Bartlett J.G.; Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis., 2006, vol. 42, no. 5, pp. 657–668. doi: 10.1086/499819
- Towner K.J. Acinetobacter: an old friend, but a new enemy. J. Hosp. Infect., 2009, vol. 73, no. 4, pp. 355–363. doi: 10.1016/j.jhin.2009.03.032
- Yang C.H., Su P.W., Moi S.H., Chuang L.Y. Biofilm Formation in Acinetobacter Baumannii: Genotype-Phenotype Correlation. Molecules, 2019, vol. 24, no. 10: 1849. doi: 10.3390/molecules24101849
- Yang J., Toyofuku M., Sakai R., Nomura N. Influence of the alginate production on cell-to-cell communication in Pseudomonas aeruginosa PAO1. Environ. Microbiol. Rep., 2017, vol. 9, no. 3, pp. 239–249. doi: 10.1111/1758-2229.12521
Supplementary files
