New approaches for combating polyresistant ESKAPE pathogens

Cover Page

Cite item

Full Text

Abstract

Antibiotic resistance of microorganisms is the most pressing global health problem due to the ever-increasing number of deaths caused by ineffective antibiotic therapy. The COVID-19 pandemic has only exacerbated pre-existing issue of increasing resistance of bacterial strains worldwide. Lack of public awareness about proper use of antibiotics directly impacts on uncontrolled antibiotic administration associated with weak antibiotic dispensing controls as well as limited access to health facilities in low- and middle-income countries. It is reported that 68.9% of COVID-19 patients used antibiotics for prophylaxis against bacterial complications or to treat coronavirus infection (mainly azithromycin and ceftriaxone) before hospitalization, with a self-medication rate of 33.0%. The most antibiotic-resistant and dangerous to global public health group of microorganisms is known as ESKAPE: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species. The proportion of resistant strains among these microorganisms can reach 95%. In light of the rapid increase in the number of infections caused by antibiotic-resistant strains, a need to create new antibacterial drugs is the most urgent task. The development of new antibiotics is a high-cost goal and it’s often ineffective. Therefore, more and more often their developers resort to the use of antibiotics combinations or using them together with adjuvants of different mechanisms of action. In recent years, special devices and coatings with nanoparticles of various metals deposited on their surface have become increasingly widespread. Some successes achieved in the use of antimicrobial peptides have been leveled by the loss of activity in the human body and their high production cost. In this regard, the use of bacteriophages, especially in combination with antibiotics, has been becoming a promising approach. The observed synergism both in vitro and in vivo experiments allow to hope for certain successes in the fight against ESKAPE group multidrug-resistant pathogens.

About the authors

L. S. Konkova

St. Petersburg Pasteur Institute

Email: lykraeva@yandex.ru

Junior Researcher, Laboratory of Medical Bacteriology

Russian Federation, St. Petersburg

E. V. Rogacheva

St. Petersburg Pasteur Institute

Email: lykraeva@yandex.ru

PhD (Biology), Junior Researcher, Laboratory of Medical Bacteriology

Russian Federation, St. Petersburg

L. A. Kraeva

St. Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: lykraeva@yandex.ru

DSc (Medicine), Associate Professor, Head of the Laboratory of Medical Bacteriology, Professor of the Department of Microbiology

Russian Federation, St. Petersburg; St. Peterburg

References

  1. Акимкин В.Г., Тутельян А.В., Шулакова Н.И., Воронин Е.М. Пандемия COVID-19: новый виток нарастания антибиотикорезистентности // Инфекционные болезни. 2021. Т. 19, № 3. С. 133–138. [Акимкин В.Г., Тутельян А.В., Шулакова Н.И., Воронин Е.М. Пандемия COVID-19: новый виток нарастания антибиотикорезистентности. Infektsionnye bolezni = Infectious Diseases, 2021, vol. 19, no. 3, pp. 133–138. (In Russ.)] doi: 10.20953/1729-9225-2021-3-133-138
  2. Antibacterial agents in clinical and preclinical development: an overview and analysis. Geneva: World Health Organization, 2022. URL: https://www.researchgate.net/publication/362630806_2021_Antibacterial_agents_in_clinical_and_preclinical_development_an_overview_and_analysis
  3. Ahmed A., Azim A., Gurjar M., Baronia A. Current concepts in combination antibiotic therapy for critically ill patients. Indian J. Crit. Care Med., 2014, vol. 18, no. 5, pp. 310–314. doi: 10.4103/0972-5229.132495
  4. Ahmed S., Raqib R., Guðmundsson G., Bergman P., Agerberth B., Rekha R. Host-directed therapy as a novel treatment strategy to overcome tuberculosis: targeting immune modulation. Antibiotics, 2020, vol. 9, no. 1: 21. doi: 10.3390/antibiotics9010021
  5. Baronia A., Ahmed A. Current concepts in combination antibiotic therapy for critically ill patients. Indian J. Crit. Care Med., 2014, vol. 18, no. 5, pp. 310–314. doi: 10.4103/0972-5229.132495
  6. Barrio-Tofiño E., López-Causapé C., Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases. Int. J. Antimicrob. Agents, 2020, vol. 56, no. 6, pp. 106–126. doi: 10.1016/j.ijantimicag.2020.106196
  7. Berglund N., Piggot T., Jefferies D., Sessions R., Bond P., Khalid S. Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: a molecular dynamics study. PLoS Comput. Biol., 2015, vol. 11, no. 4, pp. 1004–1018. doi: 10.1371/journal.pcbi.1004180
  8. Bernal P., Molina-Santiago C., Daddaoua A., Llamas M. Antibiotic adjuvants: Identification and clinical use. Microb. Biotechnol., 2013, vol. 6, no. 5, pp. 445–449. doi: 10.1111/1751-7915.12044
  9. Björn C., Mahlapuu M., Mattsby-Baltzer I., Håkansson J. Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r. Peptides (NY), 2016, vol. 81, pp. 21–28. doi: 10.1016/j.peptides.2016.08.004
  10. Bonomo R., Szabo D. Mechanisms of multidrug resistance in acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis., 2006, vol. 43, no. 2, pp. 49–56. doi: 10.1086/504477
  11. Brüssow H. Phage therapy: the Escherichia coli experience. Microbiology, 2005, vol. 151, pp. 2133–2140. doi: 10.1099/mic.0.27849-0
  12. Cai Y., Wang J., Liu X., Wang R., Xia L. A review of the combination therapy of low frequency ultrasound with antibiotics. Biomed. Res. Int., 2017, vol. 2017, pp. 1–14. doi: 10.1155/2017/2317846
  13. Cano E., Caflisch K., Bollyky P., Van Belleghem J., Patel R., Fackler J. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin. Infect. Dis., 2021, vol. 73, no. 1, pp. 144–151. doi: 10.1093/cid/ciaa705
  14. Castanheira M., Kimbrough J., DeVries S., Mendes R., Sader H. Trends of β-lactamase occurrence among Escherichia coli and Klebsiella pneumoniae in United States Hospitals during a 5-year period and activity of antimicrobial agents against isolates stratified by β-lactamase type. Open Forum Infect. Dis., 2023, vol. 10, no. 2, pp. 1–11. doi: 10.1093/ofid/ofad038
  15. Chan B., Turner P., Kim S., Mojibian H., Elefteriades J., Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health, 2018, vol. 2018, no. 1, pp. 60–66. doi: 10.1093/emph/eoy005
  16. Chang S., Hsieh S., Chen M., Sheng W., Chen Y. Oral fusidic acid fails to eradicate methicillin-resistant Staphylococcus aureus colonization and results in emergence of fusidic acid-resistant strains. Diagn. Microbiol. Infect. Dis., 2000, vol. 36, no. 2, pp. 131–136. doi: 10.1016/s0732-8893(99)00116-9.
  17. Chatterjee A., Chakraborty R., Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology, 2014, vol. 25, no. 13, pp. 101–135. doi: 10.1088/0957-4484/25/13/135101
  18. Chawla M., Verma J., Gupta R., Das B. Antibiotic potentiators against multidrug-resistant bacteria: discovery, development, and clinical relevance. Front. Microbiol., 2022, vol. 13, pp. 1–19. doi: 10.3389/fmicb.2022.887251
  19. Chen P., Wu Z., Leung A., Chen X., Landao-Bassonga E., Gao J. Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration. Biomedical Materials, 2018, vol. 13, no. 6, pp. 14–25. doi: 10.1088/1748-605X/aae15b
  20. Chernousova S., Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl., 2013, vol. 52, no. 6, pp. 1636–1653. doi: 10.1002/anie.201205923
  21. Chinemerem Nwobodo D., Ugwu M., Oliseloke A., Al-Ouqaili M., Chinedu I., Victor C. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal., 2022, vol. 36, pp. 1–10. doi: 10.1002/jcla.24655
  22. Comeau A., Tétart F., Trojet S., Prère M., Krisch H. Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One, 2007, vol. 2, no. 8, pp. 1–4. doi: 10.1371/journal.pone.0000799
  23. Coronado-Álvarez N., Parra D., Parra-Ruiz J. Clinical efficacy of fosfomycin combinations against a variety of gram-positive cocci. Enferm. Infecc. Microbiol. Clin., 2019, vol. 37, no. 1, pp. 4–10. doi: 10.1016/j.eimc.2018.05.009
  24. Dąbrowska K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev., 2019, vol. 39, pp. 2000–2025. doi: 10.1002/med.21572
  25. Denissen J., Reyneke B., Waso-Reyneke M., Havenga B., Barnard T., Khan S. Prevalence of ESKAPE pathogens in the environment: antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health, 2022, vol. 244: 114006. doi: 10.1016/j.ijheh.2022.114006
  26. Diallo K., Dublanchet A. A Century of clinical use of phages: a literature review. Antibiotics, 2023, vol. 751, vol. 12, no. 4: 751. doi: 10.3390/antibiotics12040751
  27. Dickey J., Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One, 2019, vol. 14, no. 1, pp. 1–17. doi: 10.1371/journal.pone.0209390
  28. Diekema D., Pfaller M., Shortridge D., Zervos M., Jones R. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis., 2019, vol. 6, pp. 47–53. doi: 10.1093/ofid/ofy270
  29. Domingo-Calap P., Delgado-Martínez J. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics, 2018, vol. 7, no. 3: 66. doi: 10.3390/antibiotics7030066
  30. Drawz S., Bonomo R. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, vol. 23, pp. 160–201. doi: 10.1128/CMR.00037-09
  31. Du H., Puri S., McCall A., Norris H., Russo T., Edgerton M. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens. Front. Cell. Infect. Microbiol., 2017, vol. 7, pp. 1–12. doi: 10.3389/fcimb.2017.00041
  32. Durante-Mangoni E., Signoriello G., Andini R., Mattei A., De Cristoforo M., Murino P. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin. Infect. Dis., 2013, vol. 57, no. 3, pp. 349–358. doi: 10.1093/cid/cit253
  33. Ezraty B., Gennaris A., Barras F., Collet J. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol, 2017, vol. 15, no. 7, pp. 385–396. doi: 10.1038/nrmicro.2017.26
  34. Fauconnier A. Phage therapy regulation: from night to dawn. Viruses, 2019, vol. 11, no. 4, pp. 1–8. doi: 10.3390/v11040352
  35. Franco D., Calabrese G., Guglielmino S., Conoci S. Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms, 2022, vol. 10, no. 9: 1778. doi: 10.3390/microorganisms10091778
  36. Galiano K., Pleifer C., Engelhardt K., Brössner G., Lackner P., Huck C. Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol. Res., 2008, vol. 30, no. 3, pp. 285–287. doi: 10.1179/016164107X229902
  37. Ghosh A., Jayaraman N., Chatterji D. Small-molecule inhibition of bacterial biofilm. ACS Omega, 2020, vol. 5, no. 7, pp. 3108–3115. doi: 10.1021/acsomega.9b03695
  38. González-Bello C. Antibiotic adjuvants — a strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 4221–4228. doi: 10.1016/j.bmcl.2017.08.027
  39. Hampton H., Watson B., Fineran P. The arms race between bacteria and their phage foes. Nature, 2020, vol. 577, pp. 327–336. doi: 10.1038/s41586-019-1894-8
  40. Hemeg H. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomedicine, 2017, vol. 12, pp. 8211–8225. doi: 10.2147/IJN.S132163
  41. Hesse S., Rajaure M., Wall E., Johnson J., Bliskovsky V., Gottesman S. Phage resistance in multidrug-resistant Klebsiella pneumoniae st258 evolves via diverse mutations that culminate in impaired adsorption. mBio, 2020, vol. 11, no. 1, pp. 1–14. doi: 10.1128/mBio.02530-19
  42. Himmelweit F. Combined action of penicillin and bacteriophage on staphylococci. Lancet, 1945, vol. 246, pp. 104–105. doi: 10.1016/s0140-6736(45)91422-x
  43. Ivask A., ElBadawy A., Kaweeteerawat C., Boren D., Fischer H., Ji Z. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 2014, vol. 8, no. 1, pp. 374–386. doi: 10.1021/nn4044047
  44. Jahnke J., Cornejo J., Sumner J., Schuler A., Atanassov P., Ista L. Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1. Biointerphases, 2016, vol. 11, no. 1: 011003. doi: 10.1116/1.4939244
  45. Johri A., Johri P., Hoyle N., Nadareishvili L., Pipia L., Nizharadze D. Case report: Successful treatment of recurrent E. coli infection with bacteriophage therapy for patient suffering from chronic bacterial prostatitis. Front. Pharmacol., 2023, vol. 14: 1243824. doi: 10.3389/fphar.2023.1243824
  46. Juan C., Peña C., Oliver A. Host and pathogen biomarkers for severe Pseudomonas aeruginosa infections. J. Infect. Dis, 2017, vol. 215, no. 1, pp. 44–51. doi: 10.1093/infdis/jiw299
  47. Kalia V. Quorum sensing inhibitors: an overview. Biotechnol. Adv., 2013, vol. 31, no. 2, pp. 224–245. doi: 10.1016/j.biotechadv.2012.10.004
  48. Khawaldeh A., Morales S., Dillon B., Alavidze Z., Ginn A., Thomas L. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J. Med. Microbiol., 2011, vol. 60, no. 11, pp. 1697–1700. doi: 10.1099/jmm.0.029744-0
  49. Klem J., Dömötör D., Schneider G., Kovács T., Tóth A., Rákhely G. Bacteriophage therapy against staphylococci. Acta Microbiol. Immunol. Hung., 2013, vol. 60, no. 4, pp. 411–422. doi: 10.1556/AMicr.60.2013.4.3
  50. LaVergne S., Hamilton T., Biswas B., Kumaraswamy M., Schooley R., Wooten D. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect. Dis., 2018, vol. 5, no. 4: ofy064 doi: 10.1093/ofid/ofy064
  51. Law N., Logan C., Yung G., Furr C., Lehman S., Morales S. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection, 2019, vol. 47, no. 4, pp. 665–668. doi: 10.1007/s15010-019-01319-0
  52. Lemire J., Harrison J., Turner R. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol, 2013, vol. 11, no. 6, pp. 371–384. doi: 10.1038/nrmicro3028
  53. Letkiewicz S., Międzybrodzki R., Fortuna W., Weber-Dąbrowska B., Górski A. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis — case report. Folia Microbiol (Praha), 2009, vol. 54, no. 5, pp. 457–461. doi: 10.1007/s12223-009-0064-z
  54. Lin Q., Deslouches B., Montelaro R., Di Y. Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. Int. J. Antimicrob. Agents, 2018, vol. 52, no. 5, pp. 667–672. doi: 10.1016/j.ijantimicag.2018.04.019
  55. Lister P., Wolter D., Hanson N. Antibacterial-resistant Pseudomonas aeruginosa : clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev., 2009, vol. 22, no. 4, pp. 582–610. doi: 10.1128/CMR.00040-09
  56. Liu J., Liu J., Attarilar S., Wang C., Tamaddon M., Yang C. Nano-modified titanium implant materials: a way toward improved antibacterial properties. Front. Bioeng. Biotechnol., 2020, no. 8: 576969 doi: 10.3389/fbioe.2020.576969
  57. Lu L., Fu R., Li C., Yu C., Li Z., Guan H. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int. J. Nanomedicine, 2013, vol. 8, no. 1, pp. 4131–4145. doi: 10.2147/IJN.S51679
  58. Luong T., Salabarria A., Roach D. Phage therapy in the resistance era: where do we stand and where are we going? Clinical Therapeutics, 2020, vol. 42, pp. 1659–1680. doi: 10.1016/j.clinthera.2020.07.014
  59. Mahlapuu M., Håkansson J., Ringstad L., Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell. Infect. Microbiol., 2016, vol. 6: 194. doi: 10.3389/fcimb.2016.00194
  60. Mahlapuu M., Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit. Rev. Biotechnol., 2020, vol. 40, no. 7, pp. 978–992. doi: 10.1080/07388551.2020.1796576
  61. Mammari N., Lamouroux E., Boudier A., Duval R. Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles. Microorganisms, 2022, vol. 10, no. 2, pp. 437–448. doi: 10.3390/microorganisms10020437
  62. Manchanda V., Sanchaita S., Singh N. Multidrug resistant Acinetobacter. J. Glob. Infect. Dis, 2010, vol. 2, no. 3, pp. 293–302. doi: 10.4103/0974-777X.68538
  63. Mancuso G., Midiri A., Gerace E., Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 2021, vol. 10, pp. 116–126. doi: 10.3390/pathogens10101310
  64. Mandal S., Roy A., Ghosh A., Hazra T., Basak A., Franco O. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front. Pharmacol., 2014, vol. 5, pp. 105–117. doi: 10.3389/fphar.2014.00105
  65. Maragakis L., Perl T. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis., 2008, vol. 146, pp. 1254–1263. doi: 10.1086/529198
  66. Melander R., Melander C. The challenge of overcoming antibiotic resistance: an adjuvant approach? ACS Infect. Dis., 2017, vol. 3, no. 8, pp. 559–563. doi: 10.1021/acsinfecdis.7b00071
  67. Miller W., Arias C. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol, 2024, vol. 10, pp. 598–616. doi: 10.1038/s41579-024-01054-w
  68. Miller W., Murray B., Rice L., Arias C. Resistance in vancomycin-resistant enterococci. Infect. Dis. Clin. North Am., 2020, vol. 34, no. 4, pp. 751–771. doi: 10.1016/j.idc.2020.08.004
  69. Mohanty S., Mishra S., Jena P., Jacob B., Sarkar B., Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine, 2012, vol. 8, no. 6, pp. 916–924. doi: 10.1016/j.nano.2011.11.007
  70. Mulani M., Kamble E., Kumkar S., Tawre M., Pardesi K. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol., 2019, vol. 10, pp. 539–563. doi: 10.3389/fmicb.2019.00539
  71. Murray C., Ikuta K., Sharara F., Swetschinski L., Robles Aguilar G., Gray A. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022, vol. 399, pp. 629–655. doi: 10.1016/S0140-6736(21)02724-0
  72. Nichols W., Newell P., Critchley I., Riccobene T., Das S. Avibactam pharmacokinetic/pharmacodynamic targets. Antimicrob. Agents Chemother., 2018, vol. 62, no. 6: e02446-17. doi: 10.1128/AAC.02446-17
  73. De Oliveira D., Forde B., Kidd T., Harris P., Schembri M., Beatson S. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev., 2020, vol. 33, no. 3, pp. 181–190. doi: 10.1128/CMR.00181-19
  74. Papp-Wallace K., Bonomo R. New β-lactamase inhibitors in the clinic. Infect. Dis. Clin. North Am., 2016, vol. 30, no. 2, pp. 441–464. doi: 10.1016/j.idc.2016.02.007
  75. Pfaller M., Cormican M., Flamm R., Mendes R., Jones R. Temporal and geographic variation in antimicrobial susceptibility and resistance patterns of Enterococci: results from the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis., 2019, vol. 6, pp. 54–62. doi: 10.1093/ofid/ofy344
  76. Pfalzgraff A., Brandenburg K., Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol., 2018, vol. 9: 281. doi: 10.3389/fphar.2018.00281
  77. Pirnay J., Verbeken G., Ceyssens P., Huys I., de Vos D., Ameloot C., Fauconnier A. The magistral phage. Viruses, 2018, vol. 10, no. 2: 64. doi: 10.3390/v10020064
  78. Podschun R., Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev., 1998, vol. 11, no. 4, pp. 589–603. doi: 10.1128/CMR.11.4.589
  79. Poirel L., Madec J., Lupo A., Schink A., Kieffer N., Nordmann P. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr., 2018, vol. 6, no. 4: 10. doi: 10.1128/microbiolspec.ARBA-0026-2017
  80. Ramalingam B., Parandhaman T., Das S. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 7, pp. 4963–4976. doi: 10.1021/acsami.6b00161
  81. Ramirez D., Ramirez D., Arthur G., Zhanel G., Schweizer F. Guanidinylated Polymyxins as outer membrane permeabilizers capable of potentiating rifampicin, erythromycin, ceftazidime and aztreonam against gram-negative bacteria. Antibiotics, 2022, vol. 11, no. 10: 1277. doi: 10.3390/antibiotics11101277
  82. Ranjan S., Ramalingam C. Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ. Chem. Lett., 2016, vol. 14, no. 4, pp. 487–494. doi: 10.1007/s10311-016-0586-y
  83. Rhoads D., Wolcott R., Kuskowski M., Wolcott B., Ward L., Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J. Wound Care, 2009, vol. 18, no. 6, pp. 237–243. doi: 10.12968/jowc.2009.18.6.42801
  84. Rios A., Moutinho C., Pinto F., Del Fiol F., Jozala A., Chaud M. Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol. Res., 2016, vol. 191, pp. 51–80. doi: 10.1016/j.micres.2016.04.008
  85. Rodríguez-Baño J., Gutiérrez-Gutiérrez B., Machuca I., Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, Ampc-, and carbapenemase-producing enterobacteriaceae. Clin. Microbiol. Rev., 2018, vol. 31, no. 2, pp. 79–87. doi: 10.1128/CMR.00079-17
  86. Rubalskii E., Ruemke S., Salmoukas C., Boyle E., Warnecke G., Tudorache I. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics, 2020, vol. 9, no. 5, pp. 232–244. doi: 10.3390/antibiotics9050232
  87. Sapkota J., Sharma M., Shrestha D., Jha B. Antimicrobial susceptibility pattern of Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from sputum in a tertiary care hospital. Journal of Institute of Medicine Nepal, 2019, vol. 41, no. 3, pp. 59–62. doi: 10.3126/jiom.v41i3.37367
  88. Shortridge D., Gales A., Streit J., Huband M., Tsakris A., Jones R. Geographic and temporal patterns of antimicrobial resistance in pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis., 2019, vol. 6, pp. 63–68. doi: 10.1093/ofid/ofy343
  89. Simon K., Pier W., Krüttgen A., Horz H. Synergy between phage sb-1 and oxacillin against methicillin-resistant staphylococcus aureus. Antibiotics, 2021, vol. 10, no. 7, pp. 849–858. doi: 10.3390/antibiotics10070849
  90. Sirelkhatim A., Mahmud S., Seeni A., Kaus N., Ann L., Bakhori S. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett., 2015, vol. 7, no. 3, pp. 219–242. doi: 10.1007/s40820-015-0040-x
  91. Snyder A., Werth B., Nonejuie P., McRoberts J., Pogliano J., Sakoulas G. Fosfomycin enhances the activity of daptomycin against vancomycin-resistant enterococci in an in vitro pharmacokinetic-pharmacodynamic model. Antimicrob. Agents Chemother., 2016, vol. 60, no. 10, pp. 5716–5723. doi: 10.1128/AAC.00687-16
  92. Spirescu V., Chircov C., Grumezescu A., Vasile B., Andronescu E. Inorganic nanoparticles and composite films for antimicrobial therapies. Int. J. Mol. Sci., 2021, vol. 22, no. 9, pp. 4595–4620. doi: 10.3390/ijms22094595
  93. Tagliaferri T., Jansen M., Horz H. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front. Cell. Infect. Microbiol., 2019, vol. 9, pp. 22–35. doi: 10.3389/fcimb.2019.00022
  94. Tackling drug-resistant infections globally: final report and recommendations. Chaired by J. O’Neill. 2016. URL: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  95. Thambirajoo M., Maarof M., Lokanathan Y., Katas H., Ghazalli N., Tabata Y. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics, 2021, vol. 10, no. 11, pp. 1338–1364. doi: 10.3390/antibiotics10111338
  96. Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Auffan M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol., 2006, vol. 40, no. 19, pp. 6151–6156. doi: 10.1021/es060999b
  97. Tindall B., Sutton G., Garrity G. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 2, pp. 502–504. doi: 10.1099/ijsem.0.001572
  98. Tsonos J., Vandenheuvel D., Briers Y., De Greve H., Hernalsteens J., Lavigne R. Hurdles in bacteriophage therapy: deconstructing the parameters. Vet. Microbiol., 2014, vol. 171, no. 3, pp. 460–469. doi: 10.1016/j.vetmic.2013.11.001
  99. Uddin T., Chakraborty A., Khusro A., Zidan B., Mitra S., Emran T. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health, 2021, vol. 14, pp. 1750–1766. doi: 10.1016/j.jiph.2021.10.020
  100. Vazquez-Grande G., Kumar A. Optimizing antimicrobial therapy of sepsis and septic shock: focus on antibiotic combination therapy. Semin. Respir. Crit. Care Med., 2015, vol. 36, no. 1, pp. 154–166. doi: 10.1055/s-0034-1398742
  101. Vestergaard M., Paulander W., Marvig R., Clasen J., Jochumsen N., Molin S. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents, 2016, vol. 47, no. 1, pp. 48–55. doi: 10.1016/j.ijantimicag.2015.09.014
  102. Wang C., Hsieh Y., Powers Z., Kao C. Defeating antibiotic-resistant bacteria: exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci., 2020, vol. 21, pp. 1061–1079. doi: 10.3390/ijms21031061
  103. Wang G., Li X., Zasloff M. A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid sequence analysis. In: Antimicrobial peptides: discovery, design and novel therapeutic strategies. Ed. by G. Wang. Wallingford: CABI, 2010, vol. 18, pp. 1–21. doi: 10.1079/9781845936570.0001
  104. WHO (2017). Global priority list of antibiotic-resistance bacteria to guide research, discovery, and development of new antibiotics.
  105. WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. URL: https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1
  106. Wilson G., Fitzpatrick M., Walding K., Gonzalez B., Schweizer M., Suda K. Meta-analysis of clinical outcomes using ceftazidime/avibactam, ceftolozane/tazobactam, and meropenem/vaborbactam for the treatment of multidrug-resistant gram-negative infections. Open Forum Infect. Dis., 2021, vol. 8, no. 2: ofaa651. doi: 10.1093/ofid/ofaa651
  107. Wright G. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol., 2016, vol. 24, no. 11, pp. 862–871. doi: 10.1016/j.tim.2016.06.009
  108. Yahav D., Giske C., Grāmatniece A., Abodakpi H., Tam V., Leibovici L. New β-lactam–β-lactamase inhibitor combinations. Clin. Microbiol. Rev., 2020, vol. 34, no. 1, pp. 115–120. doi: 10.1128/CMR.00115-20
  109. Zhanel G., Chung P., Adam H., Zelenitsky S., Denisuik A., Schweizer F. Ceftolozane/tazobactam: a novel cephalosporin/ β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs, 2014, vol. 74, pp. 31–51. doi: 10.1007/s40265-013-0168-2
  110. Zhao C., Kristoffersson A., Khan D., Lagerbäck P., Lustig U., Cao S. Quantifying combined effects of colistin and ciprofloxacin against Escherichia coli in an in silico pharmacokinetic-pharmacodynamic model. Sci. Rep., 2024, vol. 14, no. 1, pp. 106–117. doi: 10.1038/s41598-024-61518-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Global carbapenem resistance of A. baumannii

Download (91KB)
3. Figure 2. Global carbapenem resistance of P. aeruginosa

Download (92KB)
4. Figure 3. Global antibiotic resistance of MRSA (methicillin-resistant S. aureus)

Download (103KB)
5. Figure 4. Global vancomycin resistance of E. faecalis

Download (87KB)
6. Figure 5. Global carbapenem resistance of Enterobacteriaceae

Download (78KB)

Copyright (c) 2025 Konkova L.S., Rogacheva E.V., Kraeva L.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».