Description of environmental stress mediators in Candida species
- 作者: Enoktaeva O.V.1
-
隶属关系:
- Tyumen State Medical University
- 期: 卷 15, 编号 1 (2025)
- 页面: 19-26
- 栏目: REVIEWS
- URL: https://journals.rcsi.science/2220-7619/article/view/292126
- DOI: https://doi.org/10.15789/2220-7619-DOE-17691
- ID: 292126
如何引用文章
全文:
详细
The successful spread of the genus Candida micromycetes in various host niches is accounted for by their ability to avoid stress caused by host immune system and other factors aimed at blocking fungal vital processes. The article studies the Transcriptional activator of CDR and the Multidrug resistance regulator controlling overexpression of target genes supposed to ensure resistant properties in genus Candida species against fluconazole. An environmental stress mediator is a term that characterizes a pleiotropic transcription factor as a structure capable of sensing an effect influence of a single environmental factor and transforming it into a process of increasing drug resistance in Candida micromycetes by promoting membrane-bound transporter activity. Gene point mutations or copy number alterations also increase fungal adaptive potential to fluconazole, which may further provide a selective populational advantage. The article schematically outlines a mechanism for developing adaptive response against genus Candida fungi involving environmental stress mediators to antimycotic fluconazole based on efflux proteins ATP-binding cassette and Major-Facilitator superfamily. Such premises describing activity of transcription activators mediating environmental stress suggest that a single transcription factor can upregulate expression of several genes; a single gene can be activated by several transcription factors; activation of the transcription factors described here is triggered by oxidative and osmotic stress; combination stress can block the functioning of environmental stress mediators. Knowing the genetic background of pathogenic strains may allow for simulating a combination stress able to negatively impact on micromycete life cycle.
作者简介
Olga Enoktaeva
Tyumen State Medical University
编辑信件的主要联系方式.
Email: pechkanova@mail.ru
Senior Lecturer, Department of Biology, Assistant Professor, Department of Microbiology
俄罗斯联邦, Tyumen参考
- Воропаев А.Д., Екатеринчев Д.А., Урбан Ю.Н., Зверев В.В., Несвижский Ю.В., Воропаева Е.А., Лиханская Е.И., Афанасьев М.С., Афанасьев, С. С. Экспрессия CDR1, CDR2, MDR1 и ERG11 у устойчивых к азолам штаммов Сandida albicans, выделенных от ВИЧ-инфицированных пациентов в городе Москве // Инфекция и иммунитет. 2022. Т. 12, № 5. С. 929–937. [Voropaev A.D., Ekaterinchev D.A., Urban Yu. N., Zverev V.V., Nesvizhsky Yu. V., Voropaeva E.A., Likhanskaya E.I., Afanasyev M.S., Afanasyev S. S. Expression of CDR1, CDR2, MDR1 and ERG11 in azole-resistant Candida albicans strains isolated from HIV-infected patients in Moscow. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 5, pp. 929–937. (In Russ.)] doi: 10.15789/2220-7619-CCM-1931
- Еноктаева О.В., Николенко М.В., Трушников Д.Ю., Барышникова Н.В., Соловьева С. В. Механизм формирования биопленок грибов рода Candida при кандидозной инфекции // Проблемы медицинской микологии. 2021. Т. 23, № 4. С. 3–8. [Enoktaeva O.V., Nikolenko M.V., Trushnikov D.Yu., Baryshnikova N.V., Solovieva S.V. Formation’s fungi’s biofilms mechanism of the genus Candida in candidous infection. Problemy meditsinskoi mikologii = Problems of Medical Mycology, 2021, vol. 23, no. 4, pp. 3–8. (In Russ.)] doi: 10.24412/1999-6780-2021-4-3-8
- Еноктаева О.В., Николенко М.В., Казакова А.В., Показаньева Л.Е., Давыдкина Н. С. Классификация механизмов резистентности грибов рода Candida по отношению к флуконазолу (обзор литературы) // Проблемы медицинской микологии. 2022. Т. 24, № 4. С. 4–9. [Enoktaeva O.V., Nikolenko M.V., Kazakova A.V., Pokazan’eva L.E., Davidkina N.C. Classification of resistance mechanisms of Candida fungi to fluconazole (literature review). Problemy meditsinskoi mikologii = Problems of Medical Mycology, 2022, vol. 24, no. 4, pp. 4–9. (In Russ.)] doi: 10.24412/1999-6780-2022-4-4-9
- Лисовская С.А., Исаева Г.Ш., Николаева И.В., Гусева С.Е., Гайнатуллина Л.Р., Чумарев Н. С. Частота колонизации ротоглотки и резистентность к азолам грибов Candida spp., выделенных у реанимационных пациентов с COVID-19 // Инфекция и иммунитет. 2023. Т. 13, № 2. С. 351–358. [Lisovskaya S.A., Isaeva G. Sh., Nikolaeva I.V., Guseva S.E., Gainatullina L.R., Chumarev N. S. Frequency of colonization of the oropharynx and resistance to azoles of Candida spp. fungi isolated from intensive care patients patients with COVID-19. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 351–358. (In Russ.)] doi: 10.15789/2220-7619-CAA-2059
- Arastehfar A., Daneshnia F., Hafez A., Khodavaisy S., Najafzadeh M.J., Charsizadeh A., Zarrinfar H., Salehi М., Shahrabadi Z.Z., Sasani Е., Zomorodian К., Pan W., Hagen F., Ilkit М., Kostrzewa М., Boekhout T. Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Medical Mycology, 2020, vol. 58, no. 6, pp. 766–773. doi: 10.1093/mmy/myz124
- Bhattacharya S., Sae-Tia S., Fries B. C. Candidiasis and mechanisms of antifungal resistance. Antibiotics, 2020, vol. 9, no. 6: 312. doi: 10.3390/antibiotics9060312
- Biermann A.R., Demers E.G., Hogan D. A. Mrr1 regulation of methylglyoxal catabolism and methylglyoxal-induced fluconazole resistance in Candida lusitaniae. Mol. Microbiol., 2021, vol. 115, no. 1, pp. 116–130. doi: 10.1111/mmi.14604
- Biermann A.R., Hogan, D. A. Transcriptional response of Candida auris to the Mrr1 inducers methylglyoxal and benomyl. mSphere, 2022, vol. 7, no. 3: e00124-22. doi: 10.1128/msphere.00124-22
- Borgeat V., Brandalise D., Grenouillet F., Sanglard D. Participation of the ABC Transporter CDR1 in Azole Resistance of Candida lusitaniae. J. Fungi, 2021, vol. 7, no. 9: 760. doi: 10.3390/jof7090760
- Cavalheiro M., Pais P., Galocha M., Teixeira M. C. Host-pathogen interactions mediated by MDR transporters in fungi: as pleiotropic as it gets! Genes, 2018, vol. 9, no. 7: 332. doi: 10.3390/genes9070332
- Correia I., Prieto D., Román E., Wilson D., Hube B., Alonso-Monge R., Pla J. Cooperative Role of MAPK Pathways in the Interaction of Candida albicans with the Host Epithelium. Microorganisms, 2019, vol. 8, no. 1: 48. doi: 10.3390/microorganisms8010048
- Da Silva Dantas A., Day A., Ikeh M., Kos I., Achan B., Quinn J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules, 2015, vol. 5, no. 1, pp. 142–165. doi: 10.3390/biom5010142
- Doorley L.A., Rybak J.M., Berkow E.L., Zhang Q., Morschhäuser J., Rogers P.D. Candida parapsilosis Mdr1B and Cdr1B are drivers of Mrr1-mediated clinical fluconazole resistance. Antimicrob. Agents Chemother., 2022, vol. 66. no. 7: e00289-22. doi: 10.1128/aac.00289-22
- Eldesouky H.E., Salama E.A., Li X., Hazbun T.R., Mayhoub A.S., Seleem M.N. Repurposing approach identifies pitavastatin as a potent azole chemosensitizing agent effective against azole-resistant Candida species. Sci. Rep., 2020, vol. 10, no. 1: 7525. doi: 10.1038/s41598-020-64571-7
- Fourie R., Kuloyo O.O., Mochochoko B.M., Albertyn J., Pohl C.H. Iron at the centre of Candida albicans interactions. Front. Cell Infect. Microbiol., 2018, no. 8: 185. doi: 10.3389/fcimb.2018.00185
- Franconi I., Rizzato C., Poma N., Tavanti A., Lupetti A. Candida parapsilosis sensu stricto antifungal resistance mechanisms and associated epidemiology. J. Fungi (Basel), 2023, vol. 9, no. 8: 798. doi: 10.3390/jof9080798
- Hampe I.A.I., Friedman J., Edgerton M., Morschhäuser J. An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses. PLoS Pathog., 2017, vol. 13, no. 9: e1006655. doi: 10.1371/journal.ppat.1006655
- Jia C., Zhang K., Yu Q., Zhang B., Xiao C., Dong Y., Chen Y., Zhang B., Xing L., Li M. Tfp1 is required for ion homeostasis, fluconazole resistance and N-acetylglucosamine utilization in Candida albicans. Biochim. Biophys. Acta, 2015, vol.1853, no. 10, Pt A, pp. 2731–2744. doi: 10.1016/j.bbamcr.2015.08.005
- Kaloriti D., Jacobsen M., Yin Z., Patterson M., Tillmann A., Smith D.A., Cook Е., Brown A.J. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. mBio, 2014, vol. 5, no. 4: e01334-14. doi: 10.1128/mBio.01334-14
- Lee Y., Puumala E., Robbins N., Cowen L.E. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem. Rev., 2020, vol. 121, no. 6, pp. 3390–3411. doi: 10.1021/acs.chemrev.0c00199
- Li J., Coste A.T., Liechti M., Bachmann D., Sanglard D., Lamoth F. Novel ERG11 and TAC1b mutations associated with azole resistance in Candida auris. Antimicrob. Agents Chemother., 2023, vol. 65, no. 5: e02663-20. doi: 10.1128/AAC.02663-20
- Liu Z., Rossi J.M., Myers L.C. Candida albicans Zn cluster transcription factors Tac1 and Znc1 are activated by farnesol to upregulate a transcriptional program including the multidrug efflux pump CDR1. Antimicrob. Agents Chemother., 2018, vol. 62, no. 11: e00968-18. doi: 10.1128/AAC.00968-18
- Pais P., Galocha M., Califórnia R., Viana R., Ola M., Okamoto M., Chibana H., Butler G., Teixeira M.C. Characterization of the Candida glabrata transcription factor CgMar1: role in azole susceptibility. J. Fungi (Basel), 2022, vol. 8, no. 1: 61. doi: 10.3390/jof8010061
- Prasad R., Rawal M.K., Shah A.H. Candida efflux ATPases and antiporters in clinical drug resistance. Adv. Exp. Med. Biol., 2016, vol. 892, pp. 351–376. doi: 10.1007/978-3-319-25304-6_15
- Puri S., Edgerton M. How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot Cell, 2014, vol. 13, no. 8, pp. 958–964. doi: 10.1128/EC.00095-14
- Rodriguez D.L., Quail M.M., Hernday A.D., Nobile C.J. Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Front. Cell. Infect. Microbiol., 2020, no. 10: 605711. doi: 10.3389/fcimb.2020.605711
- Román E., Correia I., Prieto D., Alonso R., Pla J. The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway. Int. Microbiol., 2020, vol. 23, no. 1, pp. 23–29. doi: 10.1007/s10123-019-00069-1
- Rybak J.M., Muñoz J.F., Barker K.S., Parker J.E., Esquivel B.D., Berkow E.L., Lockhart S.R., Gade L., Palmer G.E., White T.C., Kelly S.L., Cuomo C.A., Rogers P.D. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio, 2020, vol. 11, no. 3: e00365-20. doi: 10.1128/mBio.00365-20
- Wasi M., Khandelwal N.K., Moorhouse A.J., Nair R., Vishwakarma P., Bravo Ruiz G., Ross Z.K., Lorenz A., Rudramurthy S.M., Chakrabarti A., Lynn A.M., Mondal A.K., Gow N.A.R., Prasad R. ABC transporter genes show upregulated expression in drug-resistant clinical isolates of Candida auris: a genome-wide characterization of ATP-binding cassette (ABC) transporter genes. Front. Microbiol., 2019, no. 10: 1445. doi: 10.3389/fmicb.2019.01445
- Yang D.L., Hu Y.L., Yin Z.X., Zeng G.S., Li D., Zhang Y.Q., Xu Z.H., Guan X.M., Weng L.X., Wang L.H. Cis-2-dodecenoic Acid mediates its synergistic effect with triazoles by interfering with efflux pumps in fluconazole-resistant Candida albicans. Biomed. Environ. Sci., 2019, vol. 32, no. 3, pp. 199–209. doi: 10.3967/bes2019.027
- Zambom C.R., da Fonseca F.H., Crusca E Jr, da Silva P.B., Pavan F.R., Chorilli M., Garrido S.S. A novel antifungal system with potential for prolonged delivery of histatin 5 to limit growth of Candida albicans. Front. Microbiol., 2019, no. 10: 1667. doi: 10.3389/fmicb.2019.01667
- Zoppo M., Poma N., Di Luca M., Bottai D., Tavanti A. Genetic manipulation as a tool to unravel Candida parapsilosis species complex virulence and drug resistance: state of the art. J. Fungi (Basel), 2021, vol. 7, no. 6: 459. doi: 10.3390/jof7060459
补充文件
