Immunotherapy of Candida spp.-caused infections: myth or reality?

封面

如何引用文章

全文:

详细

Candidiasis is a mycosis caused by opportunistic pathogenic Candida spp. fungi. The infectious process can manifest as superficial forms affecting the skin and mucous membranes, as well as invasive variants. Since Candida spp. are commensals, a related disease development implies an imbalance between the pathogenic fungal factors and human immune system. Research in the field of immunotherapy of fungal infections is particularly relevant due to the increasing resistance to antifungal drugs. Based on the analyzed publications investigating candidiasis immunotherapy retrieved from the databases PubMed, ClinicalKey, and e-library, we have assessed the main directions and achievements in immunotherapy of infections caused by Candida spp., described emerging issues, and outlined future prospects. The development of live vaccines based on attenuated, genetically modified, and mutant Candida strains began in the 1980s and continues to the present day. However, creating vaccines based on Candida recombinant proteins, adhesins, and enzymes represents a safer alternative to live vaccines. A promising direction is the development of conjugate vaccines, in which the fusion of weaker antigens (cell wall glycans) with carrier immunogenic proteins leads to the formation of immunogens capable of eliciting a robust immune response. In experiments, vaccines based on inactivated C. аlbicans along with a genetically Escherichia coli-derived modified heat-labile toxin as an adjuvant have also been studied. The experience of creating combination therapies aimed at combating recurrent bacterial and fungal urogenital tract infections is promising, e.g., the combination of sublingual inactivated polyvalent bacterial vaccine MV140 and sublingual preparation of inactivated Candida albicans V132. An interesting approach involves the use of inactivated S. cerevisiae yeasts, providing cross-protection against infections caused by C. аlbicans, Aspergillus fumigatus, and Coccidioides posadasii. A search for immunotherapy targets continues, with numerous studies aimed at a deeper understanding of crosstalk between C. аlbicans and human host. Currently, two recombinant vaccines (PEV7 and NDV-3) have successfully completed Phase I/II clinical trials, raising hopes for their clinical use in the near future.

作者简介

Sofia Khostelidi

North-Western State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: Sofya.Khostelidi@szgmu.ru

DSc (Medicine), Associate Professor, Associate Professor of the Department of Clinical Mycology, Allergology and Immunology

俄罗斯联邦, St. Petersburg

N. Serebryanaya

North-Western State Medical University named after I.I. Mechnikov; Institute of Experimental Medicine; St. Petersburg State University

Email: Sofya.Khostelidi@szgmu.ru

DSc (Medicine), Professor, Professor of the Department of Clinical Mycology, Allergology and Immunology; Head of the Laboratory of General Immunology, Department of General Pathology and Pathophysiology; Professor of the Department of Cytology and Histology

俄罗斯联邦, St. Petersburg; St. Petersburg; St. Petersburg

参考

  1. Данилова Е.Ю., Шабашова Н.В., Фролова Е.В., Учеваткина А.Е., Филиппова Л.В. Иммунопатогенез орофарингеального кандидоза у больных гемобластозами // Проблемы медицинской микологии. 2021. Т. 23, № 3. С. 38–45. [Danilova E.Yu., Shabashova N.V., Frolova E.V., Uchevatkina A.E., Filippova L.V. Immunopathogenesis of oropharyngeal candidiasis in patients with hemoblastosis. Problemy meditsinskoi mikologii = Problems of Medical Mycology, 2021, vol. 23, no. 3, pp. 38–45. (In Russ.)]
  2. Козлова О.П., Шаталова М.В., Сандгартен Л.М., Шадривова О.В., Шагдилеева Е.В., Хостелиди С.Н., Гусев Д.А., Завражнов А.А., Сатурнов А.В., Рысев А.В., Вашукова М.А., Пичугина Г.А., Митичкин М.С., Богомолова Т.С., Гордеева С.А., Оганесян Э.Г., Борзова Ю.В., Васильева Н.В., Климко Н.Н. Candida auris-ассоциированные инфекции у больных COVID-19 // Проблемы медицинской микологии. 2023. Т. 25, № 2. С. 32–38. [Kozlova O.P., Shatalova M.V., Sandgarten L.M. Shadrivova O.V., Shagdileeva E.V., Кhostelidi S.N., Gusev D.A., Zavrazhnov A.A., Saturnov A.V., Rysev A.V., Vashukova M.A., Pichugina G.A.A., Mitichkin M.S., Bogomolova T.S., Gordeeva S.A., Oganesyan E.G., Borzova Yu.V., Vasilyeva N.V., Klimko N.N. Candida auris-associated infections in patients with COVID-19. Problemy meditsinskoi mikologii = Problems of Medical Mycology, 2023, vol. 25, no. 2, pp. 32–38. (In Russ.)] doi: 10.24412/1999-6780-2023-2-32-38
  3. Abdelnaby M.A., Shoueir K.R., Ghazy A.A., Abdelhamid S.M., El Kemary M.A., Mahmoud H.E., Baraka K., Abozahra R.R. Synthesis and evaluation of metallic nanoparticles-based vaccines against Candida albicans infections. J. Drug Deliv. Sci. Technol., 2022, vol. 68: 102862.
  4. Akhtar N., Magdaleno J.S.L., Ranjan S., Wani A.K., Grewal R.K., Oliva R., Shaikh A.R., Cavallo L., Chawla M. Secreted aspartyl proteinases targeted multi-epitope vaccine design for Candida dubliniensis using immunoinformatics. Vaccines, 2023, vol. 11: 364.
  5. Allert S., Schulz D., Kämmer P., Großmann P., Wolf T., Schäuble S., Panagiotou G., Brunke S., Hube B. From environmental adaptation to host survival: attributes that mediate pathogenicity of Candida auris. Virulence, 2022, vol. 13, no. 1, pp. 191–214. doi: 10.1080/21505594.2022.2026037
  6. Alqarihi A., Singh S., Edwards J.E. Jr., Ibrahim A.S., Uppuluri P. NDV-3A vaccination prevents C. albicans colonization of jugular vein catheters in mice. Sci. Rep., 2019, vol. 9: 6194.
  7. Bistoni F., Vecchiarelli A., Cenci E., Puccetti P., Marconi P., Cassone A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect. Immun., 1986, vol. 51, pp. 668–674.
  8. Butler G., Rasmussen M.D., Lin M.F., Santos M.A., Sakthikumar S., Munro C.A., Rheinbay E., Grabherr M., Forche A., Reedy J.L., Agrafioti I., Arnaud M.B., Bates S., Brown A.J., Brunke S., Costanzo M.C., Fitzpatrick D.A., de Groot P.W., Harris D., Hoyer L.L., Hube B., Klis F.M., Kodira C., Lennard N., Logue M.E., Martin R., Neiman A.M., Nikolaou E., Quail M.A., Quinn J., Santos M.C., Schmitzberger F.F., Sherlock G., Shah P., Silverstein K.A., Skrzypek M.S., Soll D., Staggs R., Stansfield I., Stumpf M.P., Sudbery P.E., Srikantha T., Zeng Q., Berman J., Berriman M., Heitman J., Gow N.A., Lorenz M.C., Birren B.W., Kellis M., Cuomo C.A. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, vol. 459, no. 7247, pp. 657–662. doi: 10.1038/nature08064
  9. Cardenas-Freytag L., Cheng E., Mayeux P., Domer J.E., Clements J.D. Effectiveness of a vaccine composed of heat-killed candida albicans and a novel mucosal adjuvant, LT(R192G), against systemic candidiasis. Infect. Immun., 1999, vol. 67, pp. 826–833.
  10. Cassone A., Cauda R. Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS, 2011, vol. 26, no. 12, pp. 1457–1472. doi: 10.1097/QAD.0b013e3283536ba8
  11. Cutler J.E., Deepe G.S. Jr., Klein B.S. Advances in combating fungal diseases: vaccines on the threshold. Nat. Rev. Microbiol., 2007, vol. 5, pp. 13–28.
  12. De Bernardis F., Boccanera M., Adriani D., Girolamo A., Cassone A. Intravaginal and intranasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis. Infect. Immun., 2002, vol. 70, pp. 2725–2729.
  13. Denning D.W. Global incidence and mortality of severe fungal disease — author’s reply. Lancet Infect. Dis., 2024, vol. 24, no. 5: e269. doi: 10.1016/S1473-3099(24)00103-8
  14. Feng Z., Lu H., Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front. Cell Infect. Microbiol., 2024, vol. 14: 1339501. doi: 10.3389/fcimb.2024.1339501
  15. Fernández-Arenas E., Molero G., Nombela C., Diez-Orejas R., Gil C. Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine. Proteomics, 2004, vol. 4, pp. 3007–3020.
  16. Fungal Disease Frequency. Gaffi — Global Action For Fungal Infections. URL: https://gaffi.org/why/fungal-disease-frequency
  17. Harpf V., Rambach G., Würzner R., Lass-Flörl C., Speth C. Candida and complement: new aspects in an old battle. Front. Immunol., 2014, vol. 11: 1471. doi: 10.3389/fimmu.2020.01471
  18. Hashash R., Younes S., Bahnan W., El Koussa J., Maalouf K., Dimassi H.I., Khalaf R.A. Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation. Mycoses, 2011, vol. 54, no. 6, pp. 491–500. doi: 10.1111/j.1439-0507.2010.01883.x.
  19. Hawksworth D.L., Lücking R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol Spectr., 2017, vol. 5, no. 4. doi: 10.1128/microbiolspec.FUNK-0052-2016
  20. Hoyer L.L., Cota E. Candida albicans agglutinin-like sequence (Als) family vignettes: a review of als protein structure and function. Front. Microbiol., 2016, vol. 7: 280. doi: 10.3389/fmicb.2016.00280
  21. Ibrahim A.S., Spellberg B.J., Avanesian V., Fu Y., Edwards J.E. Jr. The anti-candida vaccine based on the recombinant n-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect. Immun., 2006, vol. 74, pp. 3039–3304.
  22. Kozlova O., Burygina E., Khostelidi S., Shadrivova O., Saturnov A., Gusev D., Rysev A., Zavrazhnov A., Vashukova M., Pichugina G., Mitichkin M., Kovyrshin S., Bogomolova T., Borzova Y., Oganesyan E., Vasilyeva N., Klimko N. Working group. invasive candidiasis in adult patients with COVID-19: results of a multicenter study in St. Petersburg, Russia. J. Fungi (Basel), 2023, vol. 9, no. 9: 927. doi: 10.3390/jof9090927
  23. Lancaster K.Z., Pfeiffer J.K. Mechanisms controlling virulence thresholds of mixed viral populations. J. Virol., 2011, vol. 85, pp. 9778–9788.
  24. Leibovitch E.C., Jacobson S. Vaccinations for neuroinfectious disease: a global health priority. Neurotherapeutics, 2016, vol. 13, pp. 562–570.
  25. Li F., Svarovsky M.J., Karlsson A.J., Wagner J.P., Marchillo K., Oshel P., Andes D., Palecek S.P. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell, 2017, vol. 6, pp. 931–939. doi: 10.1128/EC.00049-07
  26. Lionakis M.S. New insights into innate immune control of systemic candidiasis. Med. Mycol., 2014, vol. 52, no. 6, pp. 555–564. doi: 10.1093/mmy/myu029
  27. Lionakis M.S., Netea M.G. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog., 2013, vol. 9, no. 1: e1003079. doi: 10.1371/journal.ppat.1003079
  28. Lu H., Hong T., Jiang Y., Whiteway M., Zhang S. Candidiasis: from cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv. Drug Delivery Rev., 2023, vol. 199, pp. 1149–1160. doi: 10.1016/j.addr.2023.114960
  29. Luo G., Ibrahim A.S., French S.W., Edwards J.E. Jr., Fu Y. Active and passive immunization with rHyr1p-N protects mice against hematogenously disseminated candidiasis. PLoS One, 2011, vol. 6: e25909.
  30. Martin-Cruz L., Sevilla-Ortega C., Benito-Villalvilla C., Diez-Rivero C.M., Sanchez-Ramón S., Subiza J.L., Palomares O. A combination of polybacterial MV140 and Candida albicans V132 as a potential novel trained immunity-based vaccine for genitourinary tract infections. Front. Immunol., 2020, vol. 11, pp. 6122–6129.
  31. Martinez M., Clemons K.V., Stevens D.A. Heat-killed yeast as a pan-fungal vaccine. Methods Mol. Biol., 2017, vol. 1625, pp. 23–30.
  32. Matthews R.C., Rigg G., Hodgetts S., Carter T., Chapman C., Gregory C., Illidge C., Burnie J. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob. Agents Chemother., 2003, vol. 47, pp. 2208–2216.
  33. Mayer F.L., Wilson D., Hube B. Candida albicans pathogenicity mechanisms. Virulence, 2013, vol. 4, no. 2, pp. 119–128. doi: 10.4161/viru.22913
  34. Medici N.P., Del Poeta M. New insights on the development of fungal vaccines: from immunity to recent challenges. Mem. Inst. Oswaldo Cruz, 2015, vol. 110, no. 8, pp. 966–973. doi: 10.1590/0074-02760150335
  35. Mora C., Tittensor D.P., Adl S., Simpson A.G., Worm B. How many species are there on Earth and in the ocean? PLoS Biol., 2011, vol. 9, no. 8: e1001127. doi: 10.1371/journal.pbio.1001127
  36. Nami S., Mohammadi R., Vakili M., Khezripour K., Mirzaei H., Morovati H. Fungal vaccines, mechanism of actions and immunology: a comprehensive review. BioMed. Pharmacother., 2019, vol. 109, pp. 333–344. doi: 10.1016/j.biopha.2018.10.075
  37. Nami S., Aghebati-Maleki A., Morovati H., Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. BioMed. Pharmacother., 2019, vol. 110, pp. 857–868. doi: 10.1016/j.biopha.2018.12.009
  38. Ngo L.Y., Kasahara S., Kumasaka D.K., Knoblaugh S.E., Jhingran A., Hohl T.M. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J. Infect. Dis., 2014, vol. 209, no. 1, pp. 109–119. doi: 10.1093/infdis/jit413
  39. Pappas P.G., Lionakis M.S., Arendrup M.C., Ostrosky-Zeichner L., Kullberg B.J. Invasive candidiasis. Nature Rev. Dis. Primers, 2018, vol. 4, pp. 1–20.
  40. Peroumal D., Sahu S.R., Kumari P., Utkalaja B., Acharya N. Commensal fungi candida albicans modulates dietary high-fat induced alterations in metabolism, immunity, and gut microbiota. bioRxiv, 2022, vol. 22, pp. 1–47.
  41. Phan Q.T., Myers C.L., Fu Y., Sheppard D.C., Yeaman M.R., Welch W.H., Ibrahim A.S., Edwards J.E. Jr., Filler S.G. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol., 2007, vol. 5, no. 3: e64. doi: 10.1371/journal.pbio.0050064
  42. Piccione D., Mirabelli S., Minto N., Bouklas T. Difficult but not impossible: in search of an anti-Candida vaccine. Curr. Trop. Med. Rep., 2019, vol. 15, pp. 42–49.
  43. Qadri H., Shah A.H., Alkhanani M., Almilaibary A., Mir M.A. Immunotherapies against human bacterial and fungal infectious diseases: a review. Front. Med. (Lausanne), 2023, vol. 10: 10:1135541. doi: 10.3389/fmed.2023.1135541
  44. Richardson J.P., Moyes D.L. Adaptive immune responses to Candida albicans infection. Virulence, 2015, vol. 6, no. 4, pp. 327–337. doi: 10.1080/21505594.2015.1004977
  45. Sahu S.R., Bose S., Singh M., Kumari P., Dutta A., Utkalaja B.G., Patel S.K., Acharya N. Vaccines against candidiasis: status, challenges and emerging opportunity. Front. Cell. Infect. Microbiol., 2022, vol. 12, pp. 1002–1006.
  46. Saville S.P., Lazzell A.L., Chaturvedi A.K., Monteagudo C., Lopez-Ribot J.L. Efficacy of a genetically engineered Candida albicans tet-NRG1 strain as an experimental live attenuated vaccine against hematogenously disseminated candidiasis. Clin. Vaccine Immunol., 2009, vol. 16, pp. 430–432.
  47. Schmidt C.S., White C.J., Ibrahim A.S., Filler S.G., Fu Y., Yeaman M.R., Edwards J.E. Jr., Hennessey J.P. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine, 2012, vol. 30, pp. 7594–7600.
  48. Shen H., Yu Y., Chen S.M., Sun J.J., Fang W., Guo S.Y., Hou W.T., Qiu X.R., Zhang Y., Chen Y.L., Wang Y.D., Hu X.Y., Lu L., Jiang Y.Y., Zou Z., An M.M. Dectin-1 facilitates IL-18 production for the generation of protective antibodies against Candida albicans. Front. Microbiol., 2020, vol. 11: 1648.
  49. Shibasaki S., Karasaki M., Tafuku S., Aoki W., Sewaki T., Ueda M. Oral immunization against candidiasis using Lactobacillus casei displaying enolase 1 from Candida albicans. Sci. Pharm., 2014, vol. 82, pp. 697–708.
  50. Tso G.H.W., Reales-Calderon J.A., Pavelka N. The elusive anti-Candida vaccine: lessons from the past and opportunities for the future. Front. Immunol., 2018, vol. 9: 897.
  51. Vilanova M., Teixeira L., Caramalho I., Torrado E., Marques A., Madureira P., Ribeiro A., Ferreira P., Gama M., Demengeot J. Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology, 2004, vol. 111, pp. 334–342.
  52. Voigt J., Hünniger K., Bouzani M., Jacobsen I.D., Barz D., Hube B., Löffler J., Kurzai O. Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J. Infect. Dis., 2014, vol. 209, no. 4, pp. 616–626. doi: 10.1093/infdis/jit574
  53. Wang X.J., Sui X., Yan L., Wang Y., Cao Y.B., Jiang Y.Y. Vaccines in the treatment of invasive candidiasis. Virulence, 2015, vol. 6, pp. 309–315.
  54. World Health Organization (WHO) Report. WHO fungal priority pathogens list to guide research, development and public health action. Oct 25, 2022. URL: https://www.who.int/publications/i/item/9789240060241
  55. Wüthrich M., Wang H., Li M., Lerksuthirat T., Hardison S.E., Brown G.D., Klein B. Fonsecaea pedrosoi-induced Th17-cell differentiation in mice is fostered by dectin-2 and suppressed by mincle recognition. Eur. J. Immunol., 2015, vol. 45, pp. 2542–2552. doi: 10.1002/eji.201545591
  56. Xin H. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis. Vaccine, 2016, vol. 34, no. 2, pp. 245–251. doi: 10.1016/j.vaccine.2015.11.035
  57. Xin H., Glee P., Adams A., Mohiuddin F., Eberle K. Design of a mimotope-peptide based double epitope vaccine against disseminated candidiasis. Vaccine, 2019, vol. 37, pp. 2430–2438.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. Immune responses induced by Candida antigens. Adapted from [36]. Comments. Epithelial barrier builds up the first line defense against Candida. Epithelial cells produce antimicrobial peptides restraining Candida growth. The level of antimicrobial peptide production depends on T helper 17 (TH17) cell-released IL-17 and IL-22. When the epithelial barrier becomes damaged, fungal antigens (PAMPs) interact with dendritic cell (DC) PRRs (TLRs, dectins, galectin-3, mannose receptors, DC-SIGN and Mincle) followed by DC maturation promoting antigen presentation to activate naive CD4+ T cells via MHC class II molecules and costimulatory CD40-CD40L (CD154). DCs produce cytokines that control formation of specific T cell subsets. For example, IL-23, IL-6, and TGF-β skew towards Th17 (signature cytokines: IL-17 and IL-21) mainly involved in inflammatory response. Activated CD4+ T cells interact with B cells to elicit production of antibodies of various isotypes with high affinity and long half-life. B cell response to non-protein antigens (polysaccharides, lipids, glycolipids, nucleic acids) occurs without T cell help (T-independent response) not resulting in emerging immunological memory and, subsequently, no secondary response, featured solely with low affinity short half-life IgM antibodies. Research into development of Candida (subunit and conjugate) vaccines is aimed at developing a T-dependent immune response by binding fungal polysaccharides to various carrier proteins.

下载 (448KB)

版权所有 © Khostelidi S.N., Serebryanaya N.B., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».