Antigenic features of the strains SARS-CoV-2 of omicron sublines assessed by hyperimmune mouse serum neutralisation
- Authors: Zaykovskaya A.V.1, Evseenko V.A.1, Olkin S.E.1, Pyankov O.V.1
-
Affiliations:
- State Research Center of Virology and Biotechnology “Vector”
- Issue: Vol 14, No 5 (2024)
- Pages: 881-890
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/284792
- DOI: https://doi.org/10.15789/2220-7619-AFO-17591
- ID: 284792
Cite item
Full Text
Abstract
Introduction. The emergence and spread of new genetic variants of SARS-CoV-2 underlies periodic upsurge in COVID-19 incidence. It has been shown that the most rapidly spreading genetic variants of SARS-CoV-2 are resistant to antibodies specific to the previous variant of the SARS-CoV-2, thereby necessitating to analyze the antibody evasion ability of previously circulating variants for newly emerging subvariants. The aim of this work was to assess SARS-CoV-2 cross-reactivity of coronavirus strains belonging to different genetic subvariants of Omicron isolated in the territory of the Russian Federation in the period 2020–2023 in microneutralization reaction using hyperimmune mouse sera. Materials and methods. Mouse hyperimmune sera were obtained against 10 SARS-CoV-2 strains belonging to subvariants BA.1, BA.2, CH.1.1, BN.1, BA.5.1, CL.1.2, BA.5.2, BQ.1.2.1 XBB.1.5 and XBB.3. BALB/c mice were immunized with inactivated concentrated antigen mixed at 1:1 ratio with an adjuvant representing Quillaja saponaria saponin-based virus-like immunostimulatory complex. The antibody titer was determined by neutralization test. The neutralizing activity of the hyperimmune sera was analyzed against the relevant viruses as well as against previous genetic variants of SARS-CoV-2 (Wuhan, Alpha, Beta, Gamma, Delta). Results. Cross-reactivity for all Omicron-variant strains analyzed here was shown; the degree of cross-reactivity depended on the degree of inter-strain relatedness. A prominent cross-reactivity was observed for subvariants of BA.5 so that their neutralizing activity against recombinant SARS-CoV-2 lineages was markedly reduced. Neutralizing serum titers obtained for subvariants of BA.5 against genetic variants of SARS-CoV-2 isolated during the early periods of the pandemic are reduced more than 60-fold. Conclusion. The presented method for obtaining and using hyperimmune mouse sera for neutralization reaction allows the assessment of cross-reactivity for strains belonging to different SARS-CoV-2 subvariants.
Full Text
##article.viewOnOriginalSite##About the authors
Anna V. Zaykovskaya
State Research Center of Virology and Biotechnology “Vector”
Author for correspondence.
Email: zaykovskaya_av@vector.nsc.ru
PhD (Biology), Senior Researcher, Microorganisms Collection Department
Russian Federation, Novosibirsk Region, KoltsovoV. A. Evseenko
State Research Center of Virology and Biotechnology “Vector”
Email: zaykovskaya_av@vector.nsc.ru
PhD (Biology), Leading Researcher, Department of Zoonotic Infections and Influenza
Russian Federation, Novosibirsk Region, KoltsovoS. E. Olkin
State Research Center of Virology and Biotechnology “Vector”
Email: zaykovskaya_av@vector.nsc.ru
Leading Researcher, Department of Biophysics and Environmental Studies
Russian Federation, Novosibirsk Region, KoltsovoO. V. Pyankov
State Research Center of Virology and Biotechnology “Vector”
Email: zaykovskaya_av@vector.nsc.ru
PhD (Biology), Head of the Microorganisms Collection Department
Russian Federation, Novosibirsk Region, KoltsovoReferences
- Зайковская А.В., Евсеенко В.А., Олькин С.Е., Пьянков О.В. Изучение антигенных свойств штаммов коронавируса SARS-CoV-2, выделенных на территории РФ В 2020–2022 гг., в реакции нейтрализации с использованием гипериммунных сывороток мышей // Инфекция и иммунитет. 2023. Т. 13, № 1. C. 37–45. [Zaykovskaya A.V., Evseenko V.A., Olkin S.E., Pyankov O.V. Investigating antigenic features of the SARS-CoV-2 isolated In Russian Federation in 2021–2022 by hyperimmune mouse serum neutralisation. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 1, pp. 37–45. (In Russ.)] doi: 10.15789/2220-7619-IAF-1998
- Евсеенко В.А., Зайковская А.В., Гудымо А.С., Таранов О.C., Олькин С.Е., Иматдинов А.Р., Прудникова Е.Ю., Данильченко Н.В., Шульгина И.С., Косенко М.Н., Даниленко Е.И., Пьянков С.А., Рыжиков А.Б. Оценка гуморального иммунного ответа экспериментальных животных на введение рекомбинантного эктодомена поверхностного S-гликопротеина вируса SARS-CoV-2 с ИСКОМ-адъювантом // БИОпрепараты. Профилактика, диагностика, лечение. 2023. Т. 23, № 5. С. 530–543. [Evseenko V.A., Zaykovskaya A.V., Gudymo A.S., Taranov O.S., Olkin S.E., Imatdinov A.R., Prudnikova E.Yu., Danilchenko N.V., Shulgina I.S., Kosenko M.N., Danilenko E.I., Pyankov S.A., Ryzhikov A.B. Evaluation of humoral immune responses of experimental animals to the recombinant SARS-CoV-2 spike ectodomain with the ISCOM adjuvant. Biopreparaty. Profilaktika, diagnostika, lečenie = Biological Products. Prevention, Diagnosis, Treatment, 2023, vol. 23, no. 4, pp. 530–543. (In Russ.)] doi: 10.30895/2221-996X-2023-23-4-530-543
- Ao D., He X., Hong W., Wei X. The rapid rise of SARS-CoV-2 Omicron subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants. MedComm., 2023, no. 4: e239. doi: 10.1002/mco2.239
- Bazzani L., Imperia E., Scarpa F., Sanna D., Casu M., Borsetti A., Pascarella S., Petrosillo N., Cella E., Giovanetti M., Ciccozzi M. SARS-CoV C.H.1.1 Variant: Genomic and Structural Insight. Infect. Dis. Rep., 2023, vol. 15, no. 3, pp. 292–298. doi: 10.3390/idr15030029
- Cao Y., Jian F., Wang J., Yu Y., Song W., Yisimayi A., Wang J., An R., Chen X., Zhang N., Wang Y., Wang P., Zhao L., Sun H., Yu L., Yang S., Niu X., Xiao T., Gu Q., Shao F., Hao X., Xu Y., Jin R., Shen Z., Wang Y., Xie X.S. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature, 2023, vol. 614, no. 7948, pp. 521–529. doi: 10.1038/s41586-022-05644-7
- Cao Y., Yisimayi A., Jian F., Song W., Xiao T., Wang L., Du S., Wang J., Li Q., Chen X., Yu Y., Wang P., Zhang Z., Liu P., An R., Hao X., Wang Y., Wang J., Feng R., Sun H., Zhao L., Zhang W., Zhao D., Zheng J., Yu L., Li C., Zhang N., Wang R., Niu X., Yang S., Song X., Chai Y., Hu Y., Shi Y., Zheng L., Li Z., Gu Q., Shao F., Huang W., Jin R., Shen Z., Wang Y., Wang X., Xiao J., Xie X.S. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature, 2022, vol. 608, no. 7923, pp. 593–602. doi: 10.1038/s41586-022-04980-y
- Chen J., Wang R., Hozumi Y., Liu G., Qiu Y., Wei X., Wei G.W. Emerging Dominant SARS-CoV-2 Variants. J. Chem. Inf. Model., 2023, vol. 63, no. 1, pp. 335–342. doi: 10.1021/acs.jcim.2c01352
- Firouzabadi N., Ghasemiyeh P., Moradishooli F., Mohammadi-Samani S. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int. Immunopharmacol., 2023, vol. 17: 109968. doi: 10.1016/j.intimp.2023.109968
- Hachmann N.P., Miller .J, Collier A.Y., Ventura J.D., Yu J., Rowe M., Bondzie E.A., Powers O., Surve N., Hall K., Barouch D.H. Neutralization Escape by SARS-CoV-2 Omicron Subvariants B.A.2.12.1, BA.4, and BA.5. N. Engl. J. Med., 2022, vol. 387, no. 1, pp. 86–88. doi: 10.1056/NEJMc2206576
- Hay A.J., McCauley J.W. The WHO global influenza surveillance and response system (GISRS)-A future perspective. Influenza. Other. Respir. Viruses, 2018, vol. 12, no. 5, pp. 551–557. doi: 10.1111/irv.12565
- Hu Y., Zou J., Kurhade C., Deng X., Chang H.C., Kim D.K., Shi P.Y., Ren P., Xie X. Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1. Emerg. Microbes Infect., 2023, vol. 12, no. 2: 2271089. doi: 10.1080/22221751.2023.2271089
- Iketani S., Liu L., Guo Y., Liu L., Chan J.F., Huang Y., Wang M., Luo Y., Yu J., Chu H., Chik K.K., Yuen T.T., Yin M.T., Sobieszczyk M.E., Huang Y., Yuen K.Y., Wang H.H., Sheng Z., Ho D.D. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature, 2022, vol. 604, no. 7906, pp. 553–556. doi: 10.1038/s41586-022-04594-4
- Jiang X.L., Zhu K.L., Wang X.J., Wang G.L., Li Y.K., He X.J., Sun W.K., Huang P.X., Zhang J.Z., Gao H.X., Dai E.H., Ma M.J. Omicron B.Q.1 and BQ.1.1 escape neutralisation by omicron subvariant breakthrough infection. Lancet. Infect. Dis., 2023, vol.23, no. 1, pp. 28–30. doi: 10.1016/S1473-3099(22)00805-2
- Kurhade C., Zou J., Xia H., Liu M., Chang H.C., Ren P., Xie X., Shi P.Y. Low neutralization of SARS-CoV-2 Omicron B.A.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med., 2023, vol. 29, no. 2, pp. 344–347. doi: 10.1038/s41591-022-02162-x
- Lavezzo E., Pacenti M., Manuto L., Boldrin C., Cattai M., Grazioli M., Bianca F., Sartori M., Caldart F., Castelli G., Nicoletti M., Nieddu E., Salvadoretti E., Labella B., Fava L., Vanuzzo M.C., Lisi V., Antonello M., Grimaldi C.I., Zulian C., Del Vecchio C., Plebani M., Padoan A., Cirillo D.M., Brazzale A.R., Tonon G., Toppo S., Dorigatti I., Crisanti A. Neutralising reactivity against SARS-CoV-2 Delta and Omicron variants by vaccination and infection history. Genome Med., 2022, vol. 14, no. 1: 61. doi: 10.1186/s13073-022-01066-2
- Li C., Huang J., Yu Y., Wan Z., Chiu M.C., Liu X., Zhang S., Cai J.P., Chu H., Li G., Chan J.F., To K.K., Yang Z., Jiang S., Yuen K.Y., Clevers H., Zhou J. Human airway and nasal organoids reveal escalating replicative fitness of SARS-CoV-2 emerging variants. Proc. Natl Acad. Sci. USA, 2023, vol. 120, no. 17: e2300376120. doi: 10.1073/pnas.2300376120
- Lineage List. URL: https://cov-lineages.org/lineage_list.html
- Liu S., Liang Z., Nie J., Gao W.B., Li X., Zhang L., Yu Y., Wang Y., Huang W. Sera from breakthrough infections with SARS-CoV-2 BA.5 or BF.7 showed lower neutralization activity against XBB.1.5 and CH.1.1. Emerg. Microbes Infect., 2023, vol. 12, no. 2: 2225638. doi: 10.1080/22221751.2023.2225638
- Planas D., Saunders N., Maes P., Guivel-Benhassine F., Planchais C., Buchrieser J., Bolland W.H., Porrot F., Staropoli I., Lemoine F., Péré H., Veyer D., Puech J., Rodary J., Baele G., Dellicour S., Raymenants J., Gorissen S., Geenen C., Vanmechelen B., Wawina-Bokalanga T., Martí-Carreras J., Cuypers L., Sève A., Hocqueloux L., Prazuck T., Rey F.A., Simon-Loriere E., Bruel T., Mouquet H., André E., Schwartz O. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 2022, vol. 602, no. 7898, pp. 671–675. doi: 10.1038/s41586-021-04389-z
- Pochtovyi A.A., Kustova D.D., Siniavin A.E., Dolzhikova I.V., Shidlovskaya E.V., Shpakova O.G., Vasilchenko L.A., Glavatskaya A.A., Kuznetsova N.A., Iliukhina A.A., Shelkov A.Y., Grinkevich O.M., Komarov A.G., Logunov D.Y., Gushchin V.A., Gintsburg A.L. In vitro efficacy of antivirals and monoclonal antibodies against SARS-CoV-2 Omicron lineages XBB.1.9.1, XBB.1.9.3, XBB.1.5, XBB.1.16, XBB.2.4, BQ.1.1.45, CH.1.1, and CL.1. Vaccines (Basel)., 2023, vol. 11, no. 10: 1533. doi: 10.3390/vaccines11101533
- Qu P., Evans J.P., Faraone J.N., Zheng Y.M., Carlin C., Anghelina M., Stevens P., Fernandez S., Jones D., Lozanski G., Panchal A., Saif L.J., Oltz E.M., Xu K., Gumina R.J., Liu S.L. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell. Host. Microbe., 2023, vol. 31, no. 1, pp. 9–17.e3. doi: 10.1016/j.chom.2022.11.012
- Qu P., Faraone J.N., Evans J.P., Zheng Y.M., Carlin C., Anghelina M., Stevens P., Fernandez S., Jones D., Panchal A.R., Saif L.J., Oltz E.M., Zhang B., Zhou T., Xu K., Gumina R.J., Liu S.L. Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants. Cell. Rep., 2023, vol. 42, no. 5: 112443. doi: 10.1016/j.celrep.2023.112443
- Roy A., Saade C., Josset L., Clément B., Morfin F., Destras G., Valette M., Icard V., Billaud G., Oblette A., Debombourg M., Garrigou C., Brengel-Pesce K., Generenaz L., Saker K., Hernu R., Pozzetto B., Lina B., Trabaud M.A., Trouillet-Assant S., Bal A. Determinants of protection against SARS-CoV-2 Omicron B.A.1 and Delta infections in fully vaccinated outpatients. J. Med. Virol., 2023, vol. 95, no. 8: e28984. doi: 10.1002/jmv.28984
- Saito A., Tamura T., Zahradnik J., Deguchi S., Tabata K., Anraku Y., Kimura I., Ito J., Yamasoba D., Nasser H., Toyoda M., Nagata K., Uriu K., Kosugi Y., Fujita S., Shofa M., Monira Begum M., Shimizu R., Oda Y., Suzuki R., Ito H., Nao N., Wang L., Tsuda M., Yoshimatsu K., Kuramochi J., Kita S., Sasaki-Tabata K., Fukuhara H., Maenaka K., Yamamoto Y., Nagamoto T., Asakura H., Nagashima M., Sadamasu K., Yoshimura K., Ueno T., Schreiber G., Takaori-Kondo A., Genotype to Phenotype Japan (G2P-Japan) Consortium; Shirakawa K., Sawa H., Irie T., Hashiguchi T., Takayama K., Matsuno K., Tanaka S., Ikeda T., Fukuhara T., Sato K.,. Virological characteristics of the SARS-CoV-2 Omicron B.A.2.75 variant. Cell. Host. Microbe, 2022, vol. 30, no. 11, pp. 1540–1555.e15. doi: 10.1016/j.chom.2022.10.003
- SARS-CoV-2 Variant Classifications and Definitions. URL: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html#anchor_1633452601085
- Tian D., Sun Y., Xu H., Ye Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J. Med. Virol., 2022, vol. 94, no. 6, pp. 2376–2383. doi: 10.1002/jmv.27643
- Uraki R., Ito M., Furusawa Y., Yamayoshi S., Iwatsuki-Horimoto K., Adachi E., Saito M., Koga M., Tsutsumi T., Yamamoto S., Otani A., Kiso M., Sakai-Tagawa Y., Ueki H., Yotsuyanagi H., Imai M., Kawaoka Y. Humoral immune evasion of the omicron subvariants BQ.1.1 and XBB. Lancet Infect. Dis., 2023, vol. 23, no. 1, pp. 30–32. doi: 10.1016/S1473-3099(22)00816-7
- Wang Q., Iketani S., Li Z., Liu L., Guo Y., Huang Y., Bowen A.D., Liu M., Wang M., Yu J., Valdez R., Lauring A.S., Sheng Z., Wang H.H., Gordon A., Liu L., Ho D.D. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell, 2023, vol. 186, no. 2, pp. 279–286.e8. doi: 10.1016/j.cell.2022.12.018
- Wang Q., Iketani S., Li Z., Guo Y., Yeh A.Y., Liu M., Yu J., Sheng Z., Huang Y., Liu L., Ho D.D. Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell. Host. Microbe., 2022, vol. 30, no. 11, pp. 1512–1517.e4. doi: 10.1016/j.chom.2022.09.002
Supplementary files
