Bioinformatically analyzed relationships between specific human genes associated with HIV attachment
- 作者: Davydenko V.S.1, Ostankova Y.V.1, Schemelev A.N.1, Anufrieva E.V.1, Kushnareva V.V.1, Totolian A.A.1,2
-
隶属关系:
- St. Petersburg Pasteur Institute
- I. Pavlov First St. Petersburg State Medical University
- 期: 卷 14, 编号 6 (2024)
- 页面: 1153-1168
- 栏目: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/283035
- DOI: https://doi.org/10.15789/2220-7619-BAR-17830
- ID: 283035
如何引用文章
全文:
详细
Introduction. Assessing interaction between the human immunodeficiency virus (HIV) and human factors is crucial for understanding the disease pathogenesis. HIV triggers an immune response that involves numerous cellular and molecular processes related to inflammation, cell migration, and disrupted tissue barrier functions. Such reactions build up a cascade in which chemokines and cognate co-receptors, as well as other molecules regulating the immune response, play a key role. However, the interaction between HIV and the human organism cannot be reduced to a simple mechanism because it represents a multilayered system where crucial molecules and events may be unknown or require further study. Objective: to assess a significance of candidate genes potentially involved in the pathogenesis of HIV infection during the phase of viral attachment to cell, based on assessing gene expression, localization, and involvement in biological pathways and processes. Materials and methods. The study compared the characteristics of the 100 most promising candidate genes (CG) according to the HumanNet web resource with background genes (CCR5, CXCR4, CCR2, CD4), known to be reliably linked to HIV attachment. Expression data, localization, and involvement in various cellular pathways and processes for the candidate and background genes were analyzed. A scoring system was developed to assess the significance of each gene in the context of its role in immune and inflammatory responses. Results. A total of 100 candidate genes were analyzed. Using the developed scoring system, a number of genes were identified as significant based on the analyzed parameter: 17 candidates — significant by expression profile; 7 — by localization; 17 — by involvement in biological pathways; and 25 — by involvement in biological processes. The final ranking revealed 55 candidate genes. The identified candidate genes were classified into the following functional groups: chemokine co-receptors and their ligands; genes and proteins associated with G-proteins; and a group for which a common functional role or family could not be established. Conclusions. The identified correlations between the candidate genes and background genes highlight the need to further investigate CG interactions in HIV pathogenesis allowing for a more detailed assessment of the contribution of both individual genes and entire systems, which, in the future, will expand our understanding of the molecular mechanisms behind HIV infection and, hypothetically, accelerate the discovery of new (or the expansion of existing) therapeutic models.
作者简介
Vladimir Davydenko
St. Petersburg Pasteur Institute
编辑信件的主要联系方式.
Email: vladimir_david@mail.ru
Junior Researcher, Laboratory of Immunology and Virology of HIV Infection, PhD Student
俄罗斯联邦, St. PetersburgYu. Ostankova
St. Petersburg Pasteur Institute
Email: vladimir_david@mail.ru
PhD (Biology), Head of the Laboratory of Immunology and Virology HIV-Infection; Senior Researcher, Laboratory of Molecular Immunology
俄罗斯联邦, St. PetersburgA. Schemelev
St. Petersburg Pasteur Institute
Email: vladimir_david@mail.ru
Junior Researcher, Laboratory of Immunology and Virology of HIV Infection
俄罗斯联邦, St. PetersburgE. Anufrieva
St. Petersburg Pasteur Institute
Email: vladimir_david@mail.ru
Junior Researcher, Laboratory of Immunology and Virology of HIV Infection
俄罗斯联邦, St. PetersburgV. Kushnareva
St. Petersburg Pasteur Institute
Email: vladimir_david@mail.ru
Research Laboratory Assistant, Laboratory of Immunology and Virology of HIV Infection
俄罗斯联邦, St. PetersburgA. Totolian
St. Petersburg Pasteur Institute; I. Pavlov First St. Petersburg State Medical University
Email: vladimir_david@mail.ru
RAS Full Member, DSc (Medicine), Professor, Head of the Laboratory of Molecular Immunology, Director; Head of the Department of Immunology
俄罗斯联邦, St. Petersburg; St. Petersburg参考
- Aantaa R., Marjamäki A., Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes. Ann. Med., 1995, vol. 27, no. 4, pp. 439–449. doi: 10.3109/07853899709002452
- Al-Ali H.N., Crichton S.J., Fabian C., Pepper C., Butcher D.R., Dempsey F.C., Parris C.N. A therapeutic antibody targeting annexin-A1 inhibits cancer cell growth in vitro and in vivo. Oncogene, 2024, vol. 43, no. 8, pp. 608–614. doi: 10.1038/s41388-023-02919-9
- Alkhatib G., Berger E.A. HIV coreceptors: from discovery and designation to new paradigms and promise. Eur. J. Med. Res., 2007, vol. 12, no. 9, pp. 375–384.
- Alrumaihi F. The multi-functional roles of CCR7 in human immunology and as a promising therapeutic target for cancer therapeutics. Front. Mol. Biosci., 2022, vol. 9: 834149. doi: 10.3389/fmolb.2022.834149
- Apryatin S.A., Rakhmanaliev E.R., Nikolaeva I.A., Ruban S.V., Vazykhova F.G., Klimov E.A., Sulimova G.E., Sidorovich I.G. Comparison of CCR5del32 mutation in the CCR5 gene frequencies in russians, tuvinians, and in groups of HIV-infected individuals. Russian Journal of Genetics, 2005, vol. 41, pp. 1287–1290. doi: 10.1007/s11177-005-0230-6
- Aseev M.V., Shawi A., Baranov V.S., Dean M. Population frequencies of the CKR5 mutant allele of the chemokine receptor gene responsible for HIV infection. Russian Journal of Genetics, 1997, vol. 33, no. 12, pp. 1475–1477.
- Brandum E.P., Jørgensen A.S., Rosenkilde M.M., Hjortø G.M. Dendritic cells and CCR7 expression: an important factor for autoimmune diseases, chronic inflammation, and cancer. Int. J. Mol. Sci., 2021, vol. 22, no. 8340. doi: 10.3390/ijms22158340
- Cannavo A., Liccardo D., Komici K., Corbi G., de Lucia C., Femminella G.D., Elia A., Bencivenga L., Ferrara N., Koch W.J., Paolocci N., Rengo G. Sphingosine kinases and sphingosine 1-phosphate receptors: signaling and actions in the cardiovascular system. Front. Pharmacol., 2017, vol. 8: 556. doi: 10.3389/fphar.2017.00556
- Clark-Lewis I., Kim K.S., Rajarathnam K., Gong J.H., Dewald B., Moser B., Baggiolini M., Sykes B.D. Structure-activity relationships of chemokines. J. Leukoc. Biol., 1995, vol. 57, no. 5, pp. 703–711. doi: 10.1002/jlb.57.5.703
- Collins P.J., McCully M.L., Martínez-Muñoz L., Santiago C., Wheeldon J., Caucheteux S., Thelen S., Cecchinato V., Laufer J.M., Purvanov V., Monneau Y.R., Lortat-Jacob H., Legler D.F., Uguccioni M., Thelen M., Piguet V., Mellado M., Moser B. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J., 2017, vol. 31, no. 7, pp. 3084–3097. doi: 10.1096/fj.201700013R
- Console-Bram L., Brailoiu E., Brailoiu G.C., Sharir H., Abood M.E. GPR18 and intracellular calcium, MAPK, β-arrestin. Br. J. Pharmacol., 2014, vol. 171, pp. 3908–3917. doi: 10.1111/bph.12746
- Dattilo M., Neuman I., Muñoz M., Maloberti P., Cornejo Maciel F. OxeR1 regulates angiotensin II and cAMP-stimulated steroid production in human H295R adrenocortical cells. Mol. Cell. Endocrinol., 2015, vol. 408, pp. 38–44. doi: 10.1016/j.mce.2015.01.040
- Feniger-Barish R., Belkin D., Zaslaver A., Gal S., Dori M., Ran M., Ben-Baruch A. GCP-2-induced internalization of IL-8 receptors: hierarchical relationships between GCP-2 and other ELR(+)-CXC chemokines and mechanisms regulating CXCR2 internalization and recycling. Blood, 2000, vol. 95, no. 5, pp. 1551–1559. doi: 10.1182/blood.V95.5.1551.005a36_1551_1559
- Frade J.M., Llorente M., Mellado M., Alcamí J., Gutiérrez-Ramos J.C., Zaballos A., Real G., Martínez-A C. The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection. J. Clin. Invest., 1997, vol. 100, no. 3, pp. 497–502. doi: 10.1172/JCI119558
- Gordon S.B., Read R.C. Macrophage defences against respiratory tract infections. Br. Med. Bull., 2002, vol. 61, pp. 45–61. doi: 10.1093/bmb/61.1.45
- Global HIV & AIDS statistics — Fact sheet / UNAIDS 2023 epidemiological estimates. URL: https://www.unaids.org/en/resources/fact-sheet (08.05.2024)
- Hernandez P.A., Gorlin R.J., Lukens J.N., Taniuchi S., Bohinjec J., Francois F., Klotman M.E., Diaz G.A. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nature Genetics, 2003, vol. 34, no. 1, pp. 70–74. doi: 10.1038/ng1149
- Ito Y., Grivel J.C., Chen S., Kiselyeva Y., Reichelderfer P., Margolis L. CXCR4-tropic HIV-1 suppresses replication of CCR5-tropic HIV-1 in human lymphoid tissue by selective induction of CC-chemokines. J. Infect. Dis., 2004, vol. 189, no. 3, pp. 506–514. doi: 10.1086/381153
- Ivanov S., Lagunin A., Filimonov D., Tarasova O. Network-based analysis of OMICs data to understand the HIV-host interaction. Front. Microbiol., 2020, vol. 11: 1314. doi: 10.3389/fmicb.2020.01314
- Juno J.A., Fowke K.R. Clarifying the role of G protein signaling in HIV infection: new approaches to an old question. AIDS Rev., 2010, vol. 12, no. 3, pp. 164–176.
- Keiran N., Ceperuelo-Mallafré V., Calvo E., Hernández-Alvarez M.I., Ejarque M., Núñez-Roa C., Horrillo D., Maymó-Masip E., Rodríguez M.M., Fradera R., de la Rosa J.V., Jorba R., Megia A., Zorzano A., Medina-Gómez G., Serena C., Castrillo A., Vendrell J., Fernández-Veledo S. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat. Immunol., 2019, vol. 20, no. 5, pp. 581–592. doi: 10.1038/s41590-019-0372-7
- Kiertiburanakul S., Sungkanuparph S. Emerging of HIV drug resistance: epidemiology, diagnosis, treatment and prevention. Curr. HIV Res., 2009, vol. 7, no. 3, pp. 273–278. doi: 10.2174/157016209788347976
- Kim C.Y., Baek S., Cha J., Yang S., Kim E., Marcotte E.M., Hart T., Lee I. HumanNet v3: an improved database of human gene networks for disease research. Nucleic Acids Res., 2022, vol. 50, no. D1, pp. D632–D639. doi: 10.1093/nar/gkab1048
- Kim S.D., Kim J.M., Jo S.H., Lee H.Y., Lee S.Y., Shim J.W., Seo S.K., Yun J., Bae Y.S. Functional expression of formyl peptide receptor family in human NK cells. J. Immunol., 2009, vol. 183, no. 9, pp. 5511–5517. doi: 10.4049/jimmunol.0802986
- Koenen J., Bachelerie F., Balabanian K., Schlecht-Louf G., Gallego C. Atypical chemokine receptor 3 (ACKR3): a comprehensive overview of its expression and potential roles in the immune system. Mol. Pharmacol., 2019, vol. 96, no. 6, pp. 809–818. doi: 10.1124/mol.118.115329
- Kohlmeier J.E., Cookenham T., Miller S.C., Roberts A.D., Christensen J.P., Thomsen A.R., Woodland D.L. CXCR3 directs antigen-specific effector CD4+ T cell migration to the lung during parainfluenza virus infection. J. Immunol., 2009, vol. 183, no. 7, pp. 4378–4384. doi: 10.4049/jimmunol.0902022
- Kurnik D., Muszkat M., Friedman E.A., Sofowora G.G., Diedrich A., Xie H.G., Harris P.A., Choi L., Wood A.J., Stein C.M. Effect of the alpha2C-adrenoreceptor deletion322-325 variant on sympathetic activity and cardiovascular measures in healthy subjects. J. Hypertens., 2007, vol. 25, no. 4, pp. 763–771. doi: 10.1097/HJH.0b013e328017f6e9
- Mabrouk N., Tran T., Sam I., Pourmir I., Gruel N., Granier C., Pineau J., Gey A., Kobold S., Fabre E., Tartour E. CXCR6 expressing T cells: functions and role in the control of tumors. Front. Immunol., 2022, vol. 13: 1022136. doi: 10.3389/fimmu.2022.1022136
- Mabuka J.M., Mackelprang R.D., Lohman-Payne B., Majiwa M., Bosire R., John-Stewart G., Rowland-Jones S., Overbaugh J., Farquhar C. CCR2-64I polymorphism is associated with lower maternal HIV-1 viral load and reduced vertical HIV-1 transmission. J. Acquir. Immune Defic. Syndr., 2009, vol. 51, no. 2, pp. 235–237. doi: 10.1097/QAI.0b013e31819c155b
- Martens K., Steelant B., Bullens D.M.A. Taste receptors: the gatekeepers of the airway epithelium. Cells, 2021, vol. 10, no. 11: 2889. doi: 10.3390/cells10112889
- McMyn N.F., Varriale J., Fray E.J., Zitzmann C., MacLeod H., Lai J., Singhal A., Moskovljevic M., Garcia M.A., Lopez B.M., Hariharan V., Rhodehouse K., Lynn K., Tebas P., Mounzer K., Montaner L.J., Benko E., Kovacs C., Hoh R., Simonetti F.R., Laird G.M., Deeks S.G., Ribeiro R.M., Perelson A.S., Siliciano R.F., Siliciano J.M. The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J. Clin. Invest., 2023, vol. 133, no. 17: e171554. doi: 10.1172/JCI171554
- Na J., Zhou W., Yin M., Hu Y., Ma X. GNA13 promotes the proliferation and migration of lung squamous cell carcinoma cells through regulating the PI3K/AKT signaling pathway. Tissue Cell, 2022, vol. 76: 101795. doi: 10.1016/j.tice.2022.101795
- Nemes B., Bölcskei K., Kecskés A., Kormos V., Gaszner B., Aczél T., Hegedüs D., Pintér E., Helyes Z., Sándor Z. Human somatostatin SST4 receptor transgenic mice: construction and brain expression pattern characterization. Int. J. Mol. Sci., 2021, vol. 22, no. 7: 3758. doi: 10.3390/ijms22073758
- Ruckriegl S., Loris J., Wert K., Bauerschmitz G., Gallwas J., Gründker C. Knockdown of G protein-coupled estrogen receptor 1 (GPER1) enhances tumor-supportive properties in cervical carcinoma cells. Cancer Genomics Proteomics, 2023, vol. 20, no. 3, pp. 281–297. doi: 10.21873/cgp.20381
- Schafer C.T., Chen Q., Tesmer J.J.G., Handel T.M. Atypical chemokine receptor 3 “senses” CXC chemokine receptor 4 activation through GPCR kinase phosphorylation. Mol. Pharmacol., 2023, vol. 104, no. 4, pp. 174–186. doi: 10.1124/molpharm.123.000710
- Schemelev A.N., Davydenko V.S., Ostankova Y.V., Reingardt D.E., Serikova E.N., Zueva E.B., Totolian A.A. Involvement of human cellular proteins and structures in realization of the HIV life cycle: a comprehensive review. Viruses, 2024, vol. 16, no. 11: 1682. doi: 10.3390/v16111682
- Shchemelev A.N., Ostankova Y.V., Zueva E.B., Semenov A.V., Totolian A.A. Detection of patient HIV-1 drug resistance mutations in Russia’s Northwestern Federal District in patients with treatment failure. Diagnostics (Basel), 2022, vol. 12, no. 8: 1821. doi: 10.3390/diagnostics12081821
- Shimizu T., De Wispelaere A., Winkler M., D’Souza T., Caylor J., Chen L., Dastvan F., Deou J., Cho A., Larena-Avellaneda A., Reidy M., Daum G. Sphingosine-1-phosphate receptor 3 promotes neointimal hyperplasia in mouse iliac-femoral arteries. Arterioscler. Thromb. Vasc. Biol., 2012, vol. 32, no. 4, pp. 955–961. doi: 10.1161/ATVBAHA.111.241034
- Spathakis M., Dovrolis N., Filidou E., Kandilogiannakis L., Tarapatzi G., Valatas V., Drygiannakis I., Paspaliaris V., Arvanitidis K., Manolopoulos V.G., Kolios G., Vradelis S. Exploring microbial metabolite receptors in inflammatory bowel disease: an in silico analysis of their potential role in inflammation and fibrosis. Pharmaceuticals (Basel), 2024, vol. 17, no. 492. doi: 10.3390/ph17040492
- Steiniger B., Barth P., Hellinger A. The perifollicular and marginal zones of the human splenic white pulp: do fibroblasts guide lymphocyte immigration? Am. J. Pathol., 2001, vol. 159, no. 2, pp. 501–512. doi: 10.1016/S0002-9440(10)61722-1
- Tsou C.L., Peters W., Si Y., Slaymaker S., Aslanian A.M., Weisberg S.P., Mack M., Charo I.F. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest., 2007, vol. 117, no. 4, pp. 902–909. doi: 10.1172/JCI29919
- Van Op den Bosch J., Torfs P., De Winter B.Y., De Man J.G., Pelckmans P.A., Van Marck E., Grundy D., Van Nassauw L., Timmermans J.P. Effect of genetic SSTR4 ablation on inflammatory peptide and receptor expression in the non-inflamed and inflamed murine intestine. J. Cell. Mol. Med., 2009, vol. 13, no. 9B, pp. 3283–3295. doi: 10.1111/j.1582-4934.2009.00760.x
- Wareing M.D., Lyon A.B., Lu B., Gerard C., Sarawar S.R. Chemokine expression during the development and resolution of a pulmonary leukocyte response to influenza A virus infection in mice. J. Leukoc. Biol., 2004, vol. 76, no. 4, pp. 886–895. doi: 10.1189/jlb.1203644
- Xu Z., Gong L., Peng P., Liu Y., Xue C., Cao Y. Porcine enteric alphacoronavirus inhibits IFN-α, IFN-β, OAS, Mx1, and PKR mRNA expression in infected Peyer’s patches in vivo. Front. Vet. Sci., 2020, vol. 7: 449. doi: 10.3389/fvets.2020.00449
- Yagensky O., Kohansal-Nodehi M., Gunaseelan S., Rabe T., Zafar S., Zerr I., Härtig W., Urlaub H., Chua J.J. Increased expression of heme-binding protein 1 early in Alzheimer’s disease is linked to neurotoxicity. Elife, 2019, vol. 8: e47498. doi: 10.7554/eLife.47498
- Yan Y., Chen R., Wang X., Hu K., Huang L., Lu M., Hu Q. CCL19 and CCR7 expression, signaling pathways, and adjuvant functions in viral infection and prevention. Front. Cell Dev. Biol., 2019, vol. 7: 212. doi: 10.3389/fcell.2019.00212
补充文件
