Epidemic influenza virus nucleoprotein gene incorporated into vaccine influenza virus strain genome to optimize systemic and local T-cell immune response against live attenuated influenza vaccine

Abstract

Introduction. Optimization of the vaccine-induced T-cell repertoire is one of the strategies to expand the spectrum of protective potential for live attenuated influenza vaccine (LAIV). LAIV cross-protective properties can be improved by introducing the nucleoprotein (NP) gene derived from epidemic parental virus into vaccine strain genome, i.e. by replacing the classical 6:2 genome formula with 5:3. The main objective of the present study was to detail evaluation for virus-specific systemic and tissue-resident memory T-cells subsets in mice immunized with seasonal H1N1 LAIV of the genome formula 6:2 and 5:3. Materials and methods. Two H1N1 LAIV strains with varying NP genes (LAIV 6:2 and LAIV 5:3) were generated using reverse genetics techniques. C57BL/6J mice were immunized intranasally with the vaccine candidates, twice, 3 weeks apart. Cells from the spleen and lung tissues were isolated 7 days after booster immunization to be stimulated with whole H1N1 influenza virus for assessing cytokine-producing memory CD44+CD62L– T-cells as well as expression of CD69 and CD103 surface markers using flow cytometry. Humoral murine serum immunity against H1N1 virus was assessed by ELISA. Results. The LAIV 5:3 vs classical 6:2 vaccine strain carrying the epidemic parental NP gene induced significantly more pronounced humoral immune response against recent influenza virus. The group of mice immunized with LAIV 5:3 demonstrated higher levels of virus-specific CD4+ and CD8+ effector memory T cells (TEM) in the spleen, including a subset of polyfunctional (IFNγ+TNFα+IL-2+) CD4+ TEM, compared to LAIV 6:2 group. Virus-specific memory T cell levels in lung tissues after immunization with LAIV 5:3 vs LAIV 6:2 also tended to increase, but no significant difference in stimulated tissue-resident CD69+CD103 and CD69+CD103+ T cells between the groups were found. Conclusion. Modification of the seasonal LAIV strain genome for updating its epitope composition allowed to enhance the virus-specific T-cell immune response both at systemic level and in lung tissues, thereby shoeing that the effectiveness of the vaccine against circulating influenza viruses can be potentially increased.

About the authors

P. I. Prokopenko

Institute of Experimental Medicine

Author for correspondence.
Email: pi.prokopenko@gmail.com

Junior Researcher, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

E. A. Stepanova

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

PhD (Biology), Leading Researcher, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

V. A. Matyushenko

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

Researcher, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

A. K. Chistyakova

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

Research Laboratory Assistant, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

A. D. Kostromitina

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

Research Laboratory Assistant, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

T. S. Kotomina

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

Researcher, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

A. Ya. Rak

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

PhD (Biology), Senior Researcher, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

A. A. Rubinstein

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

Junior Researcher, Cell Immunology Laboratory, Department of Immunology

Russian Federation, St. Petersburg

I. V. Kudryavtsev

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology

Russian Federation, St. Petersburg

V. V. Novitskaya

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

Research Laboratory Assistant, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

L. G. Rudenko

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

DSc (Medicine), Professor, Head of A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

I. N. Isakova-Sivak

Institute of Experimental Medicine

Email: pi.prokopenko@gmail.com

RAS Corresponding Member, DSc (Biology), Head of the Laboratory of Immunology and Prevention of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

References

  1. Bodewes R., Geelhoed-Mieras M.M., Wrammert J., Ahmed R., Wilson P.C., Fouchier R.A., Osterhaus A.D., Rimmelzwaan G.F. In vitro assessment of the immunological significance of a human monoclonal antibody directed to the influenza a virus nucleoprotein. Clin. Vaccine Immunol., 2013, vol. 20, no. 8, pp. 1333–1337. doi: 10.1128/CVI.00339-13
  2. Burel J.G., Apte S.H., Groves P.L., McCarthy J.S., Doolan D.L. Polyfunctional and IFN-γ monofunctional human CD4(+) T cell populations are molecularly distinct. JCI Insight, 2017, vol. 2, no 3: e87499. doi: 10.1172/jci.insight.87499
  3. Cibrian D., Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol., 2017, vol. 47, no. 6, pp. 946–953. doi: 10.1002/eji.201646837
  4. Deiss R.G., Arnold J.C., Chen W.J., Echols S., Fairchok M.P., Schofield C., Danaher P.J., McDonough E., Ridore M., Mor D., Burgess T.H., Millar E.V. Vaccine-associated reduction in symptom severity among patients with influenza A/H3N2 disease. Vaccine, 2015, vol. 33, no. 51, pp. 7160–7167. doi: 10.1016/j.vaccine.2015.11.004
  5. Flynn J.A., Weber T., Cejas P.J., Cox K.S., Touch S., Austin L.A., Ou Y., Citron M.P., Luo B., Gindy M.E., Bahl K., Ciaramella G., Espeseth A.S., Zhang L. Characterization of humoral and cell-mediated immunity induced by mRNA vaccines expressing influenza hemagglutinin stem and nucleoprotein in mice and nonhuman primates. Vaccine, 2022, vol. 40, no. 32, pp. 4412–4423. doi: 10.1016/j.vaccine.2022.03.063
  6. Godoy P., Romero A., Soldevila N., Torner N., Jane M., Martinez A., Cayla J.A., Rius C., Dominguez A., Working Group on Surveillance of Severe Influenza Hospitalized Cases in C. Influenza vaccine effectiveness in reducing severe outcomes over six influenza seasons, a case-case analysis, Spain, 2010/11 to 2015/16. Euro Surveill., 2018, vol. 23, no. 43. doi: 10.2807/1560-7917.ES.2018.23.43.1700732
  7. Isakova-Sivak I., Stepanova E., Mezhenskaya D., Matyushenko V., Prokopenko P., Sychev I., Wong P.F., Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev. Vaccines, 2021, vol. 20, no. 9, pp. 1097–1112. doi: 10.1016/j.virol.2016.10.027
  8. Isakova-Sivak I., Korenkov D., Smolonogina T., Tretiak T., Donina S., Rekstin A., Naykhin A., Shcherbik S., Pearce N., Chen L.M., Bousse T., Rudenko L. Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology, 2017, vol. 500, pp. 209–217. doi: 10.1080/14760584.2021.1964961
  9. Iuliano A.D., Roguski K.M., Chang H.H., Muscatello D.J., Palekar R., Tempia S., Cohen C., Gran J.M., Schanzer D., Cowling B.J., Wu P., Kyncl J., Ang L.W., Park M., Redlberger-Fritz M., Yu H., Espenhain L., Krishnan A., Emukule G., van Asten L., Pereira da Silva S., Aungkulanon S., Buchholz U., Widdowson M.A., Bresee J.S. Global Seasonal Influenza-associated Mortality Collaborator Network. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet, 2018, vol. 391, no. 10127, pp. 1285–1300. doi: 10.1016/S0140-6736(17)33293-2
  10. Jegaskanda S., Co M.D.T., Cruz J., Subbarao K., Ennis F.A., Terajima M. Induction of H7N9-Cross-Reactive Antibody-Dependent Cellular Cytotoxicity Antibodies by Human Seasonal Influenza A Viruses that are Directed Toward the Nucleoprotein. J. Infect. Dis., 2017, vol. 215, no. 5, pp. 818–823. doi: 10.1093/infdis/jiw629
  11. Kang S., Brown H.M., Hwang S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018, vol. 18, no. 5: e33. doi: 10.4110/in.2018.18.e33
  12. Korenkov D.A., Laurie K.L., Reading P.C., Carolan L.A., Chan K.F., Isakova-Sivak I.I., Smolonogina T.A., Subbarao K., Barr I.G., Villanueva J., Shcherbik S., Bousse T., Rudenko L.G. Safety, immunogenicity and protection of A(H3N2) live attenuated influenza vaccines containing wild-type nucleoprotein in a ferret model. Infect. Genet. Evol., 2018, vol. 64, pp. 95–104. doi: 10.1016/j.meegid.2018.06.019
  13. Lee Y.-T., Suarez-Ramirez J.E., Wu T., Redman J.M., Bouchard K., Hadley G.A., Cauley L.S. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol., 2011, vol. 85, no. 9, pp. 4085–4094. doi: 10.1128/JVI.02493-10
  14. Mackay L.K., Braun A., Macleod B.L., Collins N., Tebartz C., Bedoui S., Carbone F.R., Gebhardt T. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol., 2015, vol. 194, no. 5, pp. 2059–2063. doi: 10.4049/jimmunol.1402256
  15. Makedonas G., Betts M.R. Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. Springer Semin. Immunopathol., 2006, vol. 28, no. 3, pp. 209–219. doi: 10.1007/s00281-006-0025-4
  16. Okoli G.N., Racovitan F., Abdulwahid T., Hyder S.K., Lansbury L., Righolt C.H., Mahmud S.M., Nguyen-Van-Tam J.S. Decline in Seasonal Influenza Vaccine Effectiveness With Vaccination Program Maturation: A Systematic Review and Meta-analysis. Open Forum Infect. Dis., 2021, vol. 8, no. 3: ofab069. doi: 10.1093/ofid/ofab069
  17. Osterholm M.T., Kelley N.S., Sommer A., Belongia E.A. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. Dis., 2012, vol. 12, no. 1, pp. 36–44. doi: 10.1016/S1473-3099(11)70295-X
  18. Prokopenko P., Matyushenko V., Rak A., Stepanova E., Chistyakova A., Goshina A., Kudryavtsev I., Rudenko L., Isakova-Sivak I. Truncation of NS1 Protein Enhances T Cell-Mediated Cross-Protection of a Live Attenuated Influenza Vaccine Virus Expressing Wild-Type Nucleoprotein. Vaccines, 2023, vol. 11, no. 3: 501. doi: 10.3390/vaccines11030501
  19. Rak A., Isakova-Sivak I., Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines, 2023, vol. 11, no. 12: 1747. doi: 10.3390/vaccines11121747
  20. Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol., 1938, vol. 27, no. 3, pp. 493–497. doi: 10.1093/oxfordjournals.aje.a118408
  21. Rekstin A., Isakova-Sivak I., Petukhova G., Korenkov D., Losev I., Smolonogina T., Tretiak T., Donina S., Shcherbik S., Bousse T., Rudenko L. Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein. Biomed. Res. Int., 2017, vol. 2017: 9359276. doi: 10.1155/2017/9359276
  22. Schmidt A., Lapuente D. T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses, 2021, vol. 13, no. 2: 199. doi: 10.3390/v13020199
  23. Skon C.N., Lee J.-Y., Anderson K.G., Masopust D., Hogquist K.A., Jameson S.C. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol., 2013, vol. 14, no. 12, pp. 1285–1293. doi: 10.1038/ni.2745
  24. Szabo P.A., Miron M., Farber D.L. Location, location, location: Tissue resident memory T cells in mice and humans. Sci. Immunol., 2019, vol. 4, no. 34. doi: 10.1126/sciimmunol.aas9673
  25. Takamura S. Persistence in Temporary Lung Niches: A Survival Strategy of Lung-Resident Memory CD8(+) T Cells. Viral Immunol., 2017, vol. 30, no. 6, pp. 438–450. doi: 10.1089/vim.2017.0016
  26. Topham D.J., Reilly E.C. Tissue-Resident Memory CD8(+) T Cells: From Phenotype to Function. Front. Immunol., 2018, vol. 9: 515. doi: 10.3389/fimmu.2018.00515
  27. Vanderven H.A., Ana-Sosa-Batiz F., Jegaskanda S., Rockman S., Laurie K., Barr I., Chen W., Wines B., Hogarth P.M., Lambe T., Gilbert S.C., Parsons M.S., Kent S.J. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. EBioMedicine, 2016, vol. 8, pp. 277–290. doi: 10.1016/j.ebiom.2016.04.029
  28. Virelizier J.L., Allison A.C., Oxford J.S., Schild G.C. Early presence of ribonucleoprotein antigen on surface of influenza virus-infected cells. Nature, 1977, vol. 266, no. 5597, pp. 52–54. doi: 10.1038/266052a0
  29. Wang W.C., Sayedahmed E.E., Sambhara S., Mittal S.K. Progress towards the development of a universal influenza vaccine. Viruses, 2022, vol. 14, no. 8: 1684. doi: 10.3390/v14081684
  30. Wheelock E.F. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science, 1965, vol. 149, no. 3681, pp. 310–311. doi: 10.1126/science.149.3681.310
  31. Zhong W., Liu F., Dong L., Lu X., Hancock K., Reinherz E.L., Katz J.M., Sambhara S. Significant impact of sequence variations in the nucleoprotein on CD8 T cell-mediated cross-protection against influenza A virus infections. PLoS One, 2010, vol. 5, no. 5: e10583. doi: 10.1371/journal.pone.0010583

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Detection of blood serum virus-specific IgG antibodies in mice immunized twice with LAIV 6:2 and LAIV 5:3 strains. Notes. Antibody levels were detected by ELISA using whole virus A/Guangdong-Maonan/SWL1536/2019 (H1N1). A. Average values of optical density in wells at each serum dilution. B. Values of antibody titers in each study group. The data were compared using the ANOVA variance analysis with Tukey’s correction (*р < 0.05; ****р < 0.0001).

Download (134KB)
3. Figure 2. Induction of systemic T-cell response by immunization with LAIV 6:2 and LAIV 5:3 strains. Notes. A. Representative dot-plot graphs of mouse splenocyte flow cytometry data after stimulation with whole H1N1/wt virus. B. Levels of cytokine-producing CD4+ T cells among the effector memory population (CD44+CD62L–). C. Cytokine-producing CD8+ T cell levels among effector memory population (CD44+CD62L–). The subpopulations of ТЕМ producing IFNγ (left), IFNγ and TNFα (middle), and IFNγ, TNFα and IL-2 (right) in response to double vaccination are presented. * р < 0.05, ** р < 0.01.

Download (349KB)
4. Figure 3. Levels of tissue-resident CD4+ (upper panel) and CD8+ (lower panel) memory T cells in mice immunized with LAIV 6:2 and LAIV 5:3 as well as placebo treated (PBS). Notes. The number of cells expressing IFNγ among CD4+(A) and CD8+ (D) effector memory T cells (CD44+CD62L–) in lung samples from immunized mice. Column 2: the proportion of CD69+ cells among the corresponding populations (B, E). Column 3: the proportion of CD69+CD103+ cells (C, F). Significant differences between the groups (Mann–Whitney criteria) are shown, *р < 0.05, **р < 0.01, ***р < 0.001.

Download (174KB)

Copyright (c) 2024 Prokopenko P.I., Stepanova E.A., Matyushenko V.A., Chistyakova A.K., Kostromitina A.D., Kotomina T.S., Rak A.Y., Rubinstein A.A., Kudryavtsev I.V., Novitskaya V.V., Rudenko L.G., Isakova-Sivak I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies