Quantitatively assessed blood leukocyte Epstein–Barr virus in adult HIV-infected patients

Cover Page

Cite item

Full Text

Abstract

Coinfection with the human immunodeficiency virus (HIV) and Epstein–Barr virus (EBV) represents a current biomedical problem. The purpose of the study was to evaluate blood leukocyte EBV detection rate and viral load in adult HIV-infected patients. Materials and methods. There were examined blood leukocytes collected from 138 HIV(+) and 68 HIV(–) individuals aged 20–69 years. Statistical analysis was carried out differentiated according to the stages of HIV infection, the CD4+ T-lymphocyte count, and adherence to antiretroviral therapy. Results. It was shown that EBV DNA was detected significantly more often in HIV(+) vs HIV(–) individuals (70.3±3.9% and 48.5±6.1%, p = 0.008), with EBV viral load comprising 18 [5; 139] versus 2 [1; 3] copies/105 cells (р < 0.001), respectively. It has been shown that the group of HIV(+) patients is heterogeneous in the frequency of EBV detection and viral load, with the peak EBV frequency (86.7±6.2%) and DNA (121 [34; 252] copies/105 cells) level observed in “naive” patients with severe immunodeficiency. Among “experienced” patients receiving therapy, the relative risk of detecting EBV DNA with low treatment adherence was significantly higher compared to those who developed high adherence (р < 0.05). When the HIV viral load reached undetectable level, EBV DNA concentration was significantly lower where HIV RNA was detectable (1 [0; 8] versus 15 [1; 162] copies/105 cells, р < 0.001). Detection of EBV DNA is associated with higher HIV viral load level and lower CD4+ T-lymphocyte count compared to patients with undetected EBV DNA. A relationship has been established between the CD4+ T-lymphocyte count in HIV(+) patients and the likelihood of active EBV infection. A threshold cut-off of 200 cells/μl was determined. CD4+ T-lymphocyte count < 200 cells/μl vs ≥ 200 cells/μl (р < 0.001) is associated with a 3.3-fold higher risk of detecting active EBV infection. Conclusion. It is necessary to continue interdisciplinary research to improve early diagnostics of EBV-associated diseases in HIV-infected individuals.

About the authors

M. I. Popkova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Author for correspondence.
Email: popmarig@mail.ru

PhD (Medicine), Leading Researcher, Laboratory of Molecular Biology and Biotechnology

Russian Federation, Nizhniy Novgorod

E. N. Filatova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: popmarig@mail.ru

PhD (Biology), Leading Researcher, Laboratory of Molecular Biology and Biotechnology

Russian Federation, Nizhniy Novgorod

S. V. Minaeva

Privolzhskiy Research Medical University

Email: popmarig@mail.ru

PhD (Мedicine), Associate Professor of the Epidemiology, Microbiology and Evidence-Based Medicine Department

Russian Federation, Nizhniy Novgorod

N. V. Neumoina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: popmarig@mail.ru

PhD (Medicine), Head Physician of the Infectious Diseases Clinic

Russian Federation, Nizhniy Novgorod

K. M. Perfilova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: popmarig@mail.ru

PhD (Medicine), Deputy Head Physician of the Infectious Diseases Clinic

Russian Federation, Nizhniy Novgorod

O. V. Utkin

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: popmarig@mail.ru

PhD (Biology), Head of the Laboratory of Molecular Biology and Biotechnology

Russian Federation, Nizhniy Novgorod

References

  1. Давидович Г.М., Карпов И.А. Клиническое течение вирусной инфекции Эпштейн–Барр у пациентов c ВИЧ // Рецепт. 2007. № 4 (54). С. 115–117. [Davidovich G.M., Karpov I.A. Clinical course of Epstein–Barr viral infection in patients with HIV. Retsept = Recipe, no. 4, pp. 115–117. (In Russ.)]
  2. Денисенко В.Б., Симованьян Э.М. Клинико-иммунологическая характеристика оппортунистических инфекций у детей при естественном течении ВИЧ-инфекции с учетом пути инфицирования // Детские инфекции. 2022. Т. 21, № 2. С. 16–22. [Denisenko V.B., Simovanyan E.M. Clinical and immunological characteristics of opportunistic infections in children with the natural course of HIV infection, taking into account the route of infection. Detskie infektsii = Children Infections, 2022, vol. 21, no. 2, pp. 16–22. (In Russ.)] doi: 10.22627/2072-8107-2022-21-2-16-22
  3. ВИЧ-инфекция у взрослых: Клинические рекомендации. 2020. 114 с. [HIV infection in adults: Clinical practice guidelines, 2020. 114 p. (In Russ.)]
  4. Львов Н.Д., Дудукина Е.А. Ключевые вопросы диагностики Эпштейна–Барр вирусной инфекции // Инфекционные болезни: новости, мнения, обучение. 2013. № 3. С. 24–32. [Lvov N.D., Dudukina E.A. Key issues of current and diagnosis of Epstein–Barr virus infection. Infektsionnye bolezni: novosti, mneniya, obuchenie = Infectious Diseases: News, Opinions, Training, 2013, no. 3, pp. 24–32. (In Russ.)]
  5. Марданлы С.Г. Инфицированность вирусом Эпштейна–Барр отдельных групп населения Московской области // Клиническая лабораторная диагностика. 2020. Т. 65, № 6. C. 358–361. [Mardanly S.G. Infection with Epstein–Barr virus in certain groups of the population of the Moscow region. Klinicheskaya Laboratornaya Diagnostika = Russian Clinical Laboratory Diagnostics, 2020, vol. 65, no. 6, pp. 358–361. (In Russ.)] doi: 10.18821/0869-2084-2020-65-6-358-361
  6. Покровский В.В., Ладная Н.Н., Соколова Е.В. ВИЧ-инфекция: Информационный бюллетень № 47. М., 2023. 80 с. [Pokrovsky V.V., Ladnaya N.N., Sokolova E.V. HIV Infection: Information bulletin no. 47. Moscow, 2023, 80 p. (In Russ.)]
  7. Попкова М.И., Филатова Е.Н., Соболева Е.А., Брызгалова Д.А., Кулова Е.А., Сахарнов Н.А., Уткин О.В. Диагностическое значение количественного определения ДНК вируса Эпштейна–Барр в лейкоцитах крови у детей при инфекционном мононуклеозе // Журнал инфектологии. 2022. Т. 14, № 2. С. 128–137. [Popkova M.I., Filatova E.N., Soboleva E.A., Bryzgalova D.A., Kulova E.A., Sakharnov N.A., Utkin O.V. Diagnostic value of Epstein–Barr virus DNA quantification in blood leukocytes in children with infectious mononucleosis. Zhurnal infektologii = Journal Infectology, 2022, vol. 14, no. 2, pp. 128–137. (In Russ.)] doi: 10.22625/2072-6732-2022-14-2-128-138
  8. Попова М.О., Цыганков И.В., Гудожникова Я.В. Рогачева Ю.А., Волков Н.П., Лепик К.В., Демченкова М.В., Григорьева М.В., Ефиркина А.Ю., Шнейдер Т.В., Копейкина Ю.В., Степанова С.А., Потапенко В.Г., Климович А.В., Медведева Н.В., Колесникова М.А., Поспелова Т.И., Михайлова Н.Б., Байков В.В., Кулагин А.Д. Плазмобластная лимфома у пациентов с ВИЧ-инфекцией: обзор литературы и результаты российского многоцентрового ретроспективного исследования // Клиническая онкогематология. 2022. Т. 15, № 1. С. 28–41. [Popova M.O., Tsygankov I.V., Gudozhnikova Ya.V., Rogacheva Yu.A., Volkov N.P., Lepik K.V., Demchenkova M.V., Grigoreva M.V., Efirkina A.Yu., Shneider T.V., Kopeikina Yu.V., Stepanova S.A., Potapenko V.G., Klimovich A.V., Medvedeva N.V., Kolesnikova M.A., Pospelova T.I., Mikhailova N.B., Baikov V.V., Kulagin A.D. Plasmablastic Lymphoma in HIV-Positive Patients: A Literature Review and Results of a Russian Multi-Center Retrospective Study. Klinicheskaya onkogematologiya = Clinical Oncohematology, 2022, vol. 15, no. 1, pp. 28–41. (In Russ.)] doi: 10.21320/2500-2139-2022-15-1-28-41
  9. Пузырева Л.В., Сафонов А.Д. Инфекции, вызванные вирусом Эпштейна–Барра, у ВИЧ-инфицированных пациентов // Журнал микробиологии, эпидемиологии и иммунобиологии. 2016. Т. 93, № 6. C. 108–116. [Puzyreva L.V., Safonov A.D. Infections caused by Epstein–Barr virus in HIV-infected patients. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2016, vol. 93, no. 6, pp. 108–116. (In Russ.)] doi: 10.36233/0372-9311-2016-6-108-116
  10. Рассохин В.В., Некрасова А.В., Михайлова Н.Б. Злокачественные опухоли при ВИЧ-инфекции. Эпидемиология, патогенез, формы опухолей. Часть 1 // ВИЧ-инфекция и иммуносупрессии. 2017. Т. 9, № 1. С. 7–21. [Rassokhin V.V., Nekrasova A.V., Mikhailova N.B. Malignant tumors in HIV patients. Epidemiology, pathogenesis, and variability. Part 1. VICh-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders,2017, vol. 9, no. 1, pp. 7–21. (In Russ.)] doi: 10.22328/2077-9828-2017-9-1-7-21
  11. Рассохин В.В., Некрасова А.В., Байков В.В., Ильин Н.В., Виноградова Ю.Н. Эпидемиология, диагностика и лечение ВИЧ-ассоциированных неходжкинских лимфом // ВИЧ-инфекция и иммуносупрессии. 2018. Т. 10, № 3. С. 17–29. [Rassokhin V.V., Nekrasova A.V., Baikov V.V., Ilyin N.V., Vinogradova Yu.N. Epidemoilogy, diagnosis, and treatment of HIV-associated non-hodgkin lymphpomas. VICh-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders,2018, vol. 10, no. 3, pp. 17–29. (In Russ.)] doi: 10.22328/2077-9828-2018-10-3-17-29
  12. Сенюта Н.Б., Смирнова К.В., Дидук С.В., Гончарова Е.В., Щербак Л.Н., Гурцевич В.Э. Структурно-функциональная характеристика онкогена LMP1 у больных с опухолями, ассоциированными и не ассоциированными с вирусом Эпштейна–Барр // Молекулярная генетика, микробиология и вирусология. 2016. № 2. С. 71–75. [Senyuta N.B., Smirnova K.V., Diduk S.V., Goncharova E.V., Shcherbak L.N., Gurtsevitch V.E. Structural and functional characteristics of the LMP1 oncogene in patients with tumors аssociated and not associated with the Epstein–Barr virus. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology, 2016, vol. 31, no. 2, pp. 87–93. (In Russ.)] doi: 10.18821/0208-0613-2016-34-2-71-75
  13. Шахгильдян В.И., Ядрихинская М.С., Сафонова А.П., Домонова Э.А., Шипулина О.Ю., Альварес-Фигероа М.В., Долгова Е.А., Тишкевич О.А. Структура вторичных заболеваний и современные походы к их лабораторной диагностике у больных ВИЧ-инфекцией // Эпидемиология и инфекционные болезни. Актуальные вопросы. 2015. № 1. С. 24–30. [Shakhgildyan V.I., Yadrikhinskaya M.S., Safonova A.P., Domonova E.A., Shipulina O.Yu., Alvares-Figeroa M.V., Dolgova E.A., Tishkevich O.A. Pattern of secondary diseases and current approaches to their laboratory diagnosis in patients with HIV infection. Epidemiologiya i infektsionnye bolezni. Aktual’nye voprosy = Epidemiology and Infectious Diseases. Current Items,2015, no. 1, pp. 24–30. (In Russ.)]
  14. Boisseau M., Lambotte O., Galicier L., Lerolle N., Marzac C., Aumont C., Coppo P., Fardet L. Epstein–Barr virus viral load in human immunodeficiency virus-positive patients with reactive hemophagocytic syndrome. Infect. Dis. (Lond)., 2015, vol. 47, no. 6, pp. 423–427. doi: 10.3109/00365548.2015.1007475
  15. Buisson M., Morand P., Genoulaz O., Bourgeat M.J., Micoud M., Seigneurin J.M. Changes in the dominant Epstein–Barr virus type during human immunodeficiency virus infection. J. Gen. Virol., 1994, vol. 75, no. 2, pp. 431–437. doi: 10.1099/0022-1317-75-2-431
  16. Byrne C.M., Johnston C., Orem J., Okuku F., Huang M.L., Rahman H., Wald A., Corey L., Schiffer J.T., Casper C., Coombs D., Gantt S. Examining the dynamics of Epstein–Barr virus shedding in the tonsils and the impact of HIV-1 coinfection on daily saliva viral loads. PLoS Comput. Biol, 2021, vol. 17, no. 6: e1009072. doi: 10.1371/journal.pcbi.1009072
  17. Chaillon A., Nakazawa M., Rawlings S.A., Curtin G., Caballero G., Scott B., Anderson C., Gianella S. Subclinical Cytomegalovirus and Epstein–Barr virus shedding is associated with increasing HIV DNA molecular diversity in peripheral blood during suppressive antiretroviral therapy. J. Virol., 2020, vol. 94, no. 19: e00927–20. doi: 10.1128/JVI.00927-20
  18. Dandachi D., Morón F. Effects of HIV on the Tumor Microenvironment. Adv. Exp. Med. Biol., 2020, vol. 1263, pp. 45–54. doi: 10.1007/978-3-030-44518-8_4
  19. Dehee A., Asselot C., Piolot T., Jacomet C., Rozenbaum W., Vidaud M., Garbarg-Chenon A., Nicolas J.C. Quantification of Epstein–Barr virus load in peripheral blood of human immunodeficiency virus-infected patients using real-time PCR. J. Med. Virol., 2001, vol. 65, no. 3, pp. 543–552.
  20. Fellner M.D., Durand K., Correa R.M., Redini L., Yampolsky C., Colobraro A., Sevlever G., Teyssié A.R., Benetucci J., Picconi M.A. Circulating Epstein–Barr virus (EBV) in HIV-infected patients and its relation with primary brain lymphoma. Int. J. Infect. Dis., 2007, vol. 11, no. 2, pp. 172–178. doi: 10.1016/j.ijid.2006.04.001
  21. Gianella S., Massanella M., Wertheim J.O., Smith D.M. The Sordid Affair Between Human Herpesvirus and HIV. J. Infect. Dis., 2015, vol. 212, no. 6, pp. 845–852. doi: 10.1093/infdis/jiv148
  22. Gianella S., Anderson C.M., Var S.R., Oliveira M.F., Lada S.M., Vargas M.V., Massanella M., Little S.J., Richman D.D., Strain M.C., Pérez-Santiago J., Smith D.M. Replication of Human Herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV infection. J. Virol., 2016, vol. 90, no. 8, pp. 3944–3952. doi: 10.1128/JVI.02638-15
  23. Giron L.B., Ramos da Silva S., Barbosa A.N., Monteiro de Barros Almeida R.A., Rosário de Souza L., Elgui de Oliveira D. Impact of Epstein–Barr virus load, virus genotype, and frequency of the 30 bp deletion in the viral BNLF-1 gene in patients harboring the human immunodeficiency virus. J. Med. Virol., 2013, vol. 85, no. 12, pp. 2110–2118. doi: 10.1002/jmv.23722
  24. Global HIV & AIDS statistics — Fact sheet: UNAIDS 2023 epidemiological estimates. URL: https://www.unaids.org/en/resources/fact-sheet (03.03.2024)
  25. Hudnall S.D., Chen T., Allison P., Tyring S.K., Heath A. Herpesvirus prevalence and viral load in healthy blood donors by quantitative real-time polymerase chain reaction. Transfusion, 2008, vol. 48, no. 6, pp. 1180–1187. doi: 10.1111/j.1537-2995.2008.01685.x
  26. Lechowicz M.J., Lin L., Ambinder R.F. Epstein–Barr virus DNA in body fluids. Curr. Opin. Oncol., 2002, vol. 14, no. 5, pp. 533–537. doi: 10.1097/00001622-200209000-00010
  27. Linke-Serinsöz E., Fend F., Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein–Barr virus (EBV) related lymphomas, pathology view point. Semin. Diagn. Pathol., 2017, vol. 34, no. 4, pp. 352–363. doi: 10.1053/j.semdp.2017.04.003
  28. Lupo J., Germi R., Lancar R., Algarte-Genin M., Hendel-Chavez H., Taoufik Y., Mounier N., Partisani M., Bonnet F., Meyohas M.C., Marchou B., Filippova A., Prevot S., Costagliola D., Morand P., Besson C. Prospective evaluation of blood Epstein–Barr virus DNA load and antibody profile in HIV-related non-Hodgkin lymphomas. AIDS, 2021, vol. 35, no. 6, pp. 861–868. doi: 10.1097/QAD.0000000000002839
  29. McHugh D., Myburgh R., Caduff N., Spohn M., Kok Y.L., Keller C.W., Murer A., Chatterjee B., Rühl J., Engelmann C., Chijioke O., Quast I., Shilaih M., Strouvelle V.P., Neumann K., Menter T., Dirnhofer S., Lam J.K., Hui K.F., Bredl S., Schlaepfer E., Sorce S., Zbinden A., Capaul R., Lünemann J.D., Aguzzi A., Chiang A.K., Kempf W., Trkola A., Metzner K.J., Manz M.G., Grundhoff A., Speck R.F., Münz C. EBV renders B cells susceptible to HIV-1 in humanized mice. Life Sci. Alliance., 2020, vol. 3, no. 8: e202000640. doi: 10.26508/lsa.202000640
  30. Miller C.S., Berger J.R., Mootoor Y., Avdiushko S.A., Zhu H., Kryscio R.J. High prevalence of multiple human herpesviruses in saliva from human immunodeficiency virus-infected persons in the era of highly active antiretroviral therapy. J. Clin. Microbiol., 2006, vol. 44, no. 7, pp. 2409–2415. doi: 10.1128/JCM.00256-06
  31. Montgomery N.D., Randall C., Painschab M., Seguin R., Kaimila B., Kasonkanji E., Zuze T., Krysiak R., Sanders M.K., Elliott A., Miller M.B., Kampani C., Chimzimu F., Mulenga M., Damania B., Tomoka T., Fedoriw Y., Dittmer D.P., Gopal S. High pretreatment plasma Epstein–Barr virus (EBV) DNA level is a poor prognostic marker in HIV-associated, EBV-negative diffuse large B-cell lymphoma in Malawi. Cancer Med., 2020, vol. 9, no. 2, pp. 552–561. doi: 10.1002/cam4.2710
  32. Mujtaba S., Varma S., Sehgal S. Coinfection with epstein barr virus in north Indian patients with HIV/AIDS. Indian. J. Pathol. Microbiol., 2005, vol. 48, no. 3, pp. 349–353.
  33. Musukuma-Chifulo K., Siddiqi O.K., Chilyabanyama O.N., Bates M., Chisenga C.C., Simuyandi M., Sinkala E., Dang X., Koralnik I.J., Chilengi R., Munsaka S. Epstein–Barr Virus Detection in the Central Nervous System of HIV-Infected Patients. Pathogens, 2022, vol. 11, no. 10, pp. 1080. doi: 10.3390/pathogens11101080
  34. Nowalk A., Green M. Epstein–Barr Virus. Microbiol. Spectr., 2016, vol. 4, no. 3. doi: 10.1128/microbiolspec
  35. O’Sullivan C.E., Peng R., Cole K.S., Montelaro R.C., Sturgeon T., Jenson H.B., Ling P.D. Epstein–Barr virus and human immunodeficiency virus serological responses and viral burdens in HIV-infected patients treated with HAART. J. Med. Virol., 2002, vol. 67, no. 3, pp. 320–326. doi: 10.1002/jmv.1008
  36. Petrara M.R., Cattelan A.M., Zanchetta M., Sasset L., Freguja R., Gianesin K., Cecchetto M.G., Carmona F., De Rossi A. Epstein–Barr virus load and immune activation in human immunodeficiency virus type 1-infected patients. J. Clin. Virol., 2012, vol. 53, no. 3, pp. 195–200. doi: 10.1016/j.jcv.2011.12.013
  37. Piriou E., van Dort K., Otto S., van Oers M.H., van Baarle D. Tight Regulation of the Epstein–Barr Virus Setpoint: Interindividual Differences in Epstein–Barr Virus DNA Load Are Conserved after HIV Infection. Clin. Infect. Dis., 2008, vol. 46, no. 2, pp. 313–316. doi:. doi: 10.1086/524079
  38. Sachithanandham J., Kannangai R., Pulimood S.A., Desai A., Abraham A.M., Abraham O.C., Ravi V., Samuel P., Sridharan G. Significance of Epstein–Barr virus (HHV-4) and CMV (HHV-5) infection among subtype-C human immunodeficiency virus-infected individuals. Indian J. Med. Microbiol., 2014, vol. 32, no. 3, pp. 261–269. doi: 10.4103/0255-0857.136558
  39. Santos L., Azevedo K., Silva L., Oliveira L. Epstein–Barr virus in oral mucosa from human immunodeficiency virus positive patients. Rev. Assoc. Med. Bras. (1992), 2014, vol. 60, no. 3, pp. 262–269. doi: 10.1590/1806-9282.60.03.016
  40. Stevens S.J., Blank B.S., Smits P.H., Meenhorst P.L., Middeldorp J.M. High Epstein–Barr virus (EBV) DNA loads in HIV-infected patients: correlation with antiretroviral therapy and quantitative EBV serology. AIDS, 2002, vol. 16, no. 7, pp. 993–1001. doi: 10.1097/00002030-200205030-00005
  41. Suntornlohanakul R., Wanlapakorn N., Vongpunsawad S., Thongmee T., Chansaenroj J., Poovorawan Y. Seroprevalence of Anti-EBV IgG among Various Age Groups from Khon Kaen Province, Thailand. Asian Pac. J. Cancer Prev., 2015, vol. 16, no. 17, pp. 7583–7587. doi: 10.7314/apjcp.2015.16.17.7583
  42. Traore L., Tao I., Bisseye C., Diarra B., Compaore T.R., Nebie Y., Assih M., Ouedraogo A., Zohoncon T., Djigma F., Ouermi D., Barro N., Sanou M., Ouedraogo R.T., Simpore J. Molecular diagnosis of cytomegalovirus, Epstein–Barr virus and Herpes virus 6 among blood donors in Ouagadougou, Burkina Faso. BMC Infect. Dis., 2014, vol. 14, no. 2: 99. doi: 10.11604/pamj.2016.24.298.6578
  43. Traore L., Nikiema O., Ouattara A.K., Compaore T.R., Soubeiga S.T., Diarra B., Obiri-Yeboah D., Sorgho P.A., Djigma F.W., Bisseye C., Yonli A.T., Simpore J. EBV and HHV-6 Circulating Subtypes in People Living with HIV in Burkina Faso, Impact on CD4 T cell count and HIV Viral Load. Mediterr. J. Hematol. Infect. Dis., 2017, vol. 9, no. 1: e2017049. doi: 10.4084/MJHID.2017.049
  44. Vangipuram R., Tyring S.K. AIDS-Associated Malignancies. Cancer Treat. Res., 2019, vol. 177, pp. 1–21. doi: 10.1007/978-3-030-03502-0_1
  45. Verdu-Bou M., Tapia G., Hernandez-Rodriguez A., Navarro J.T. Therapeutic Implications of Epstein–Barr Virus in HIV-Related Lymphomas. Cancers (Basel), 2021, vol. 13, no. 1, pp. 5534. doi: 10.3390/cancers13215534
  46. Wan Z., Chen Y., Hui J., Guo Y., Peng X., Wang M., Hu C., Xie Y., Su J., Huang Y., Xu X., Xu Y., Zhu B. Epstein–Barr virus variation in people living with human immunodeficiency virus in southeastern China. Virol. J., 2023, vol. 20, no. 1: 107. doi: 10.1186/s12985-023-02078-z
  47. Whitehurst C.B., Rizk M., Teklezghi A., Spagnuolo R.A., Pagano J.S., Wahl A. HIV co-infection augments EBV-induced tumorigenesis in vivo. Front. Virol., 2022, vol. 2: 861628. doi: 10.3389/fviro.2022.861628
  48. WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: World Health Organization, 2007. 48 p.
  49. Yao P., Millwood I., Kartsonaki C., Mentzer A.J., Allen N., Jeske R., Butt J., Guo Y., Chen Y., Walters R., Lv J., Yu C., Plummer M., de Martel C., Clifford G., Li L.M., Waterboer T., Yang L., Chen Z. Seroprevalence of 19 infectious pathogens and associated factors among middle-aged and elderly Chinese adults: a cross-sectional study. BMJ Open, 2022, vol. 12, no. 5: e058353. doi: 10.1136/bmjopen-2021-058353
  50. Zealiyas K., Teshome S., Berhe N., Amogne W., Haile A.F., Abate E., Yimer G., Weigel C., Ahmed E.H., Abebe T., Baiocchi R. The Burden of Epstein–Barr Virus (EBV) and Its Determinants among Adult HIV-Positive Individuals in Ethiopia. Viruses, 2023, vol. 15, no. 8: 1743. doi: 10.3390/v15081743

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Position of HIV(+) patients in the coordinates of the first two principal components with visual overlay of EBV DNA detection factor above or below the threshold level (1.5 lg copies/105 cells). The ellipse displays the 95% confidence interval of the barycenter patient group location. The arrows indicate the vectors of the studied variables

Download (183KB)
3. Figure 2. Analysis of the predictive power for absolute CD4+ T cell count to detect active EBV infection. Note. A) ROC analysis. The dot indicates the threshold probability value and the corresponding specificity and sensitivity levels. B) Predicted probabilities of active EBVI. The shaded area corresponds to probability confidence interval. The dotted lines indicate the probability threshold of 0.398 and the corresponding CD4+ T-lymphocyte count threshold (200 cells/μl). EBVI — EBV infection.

Download (264KB)

Copyright (c) 2024 Popkova M.I., Filatova E.N., Minaeva S.V., Neumoina N.V., Perfilova K.M., Utkin O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies