Autoimmune disorders in patients with granulomatosis diseases after COVID-19: T- and B-cells subsets function

Cover Page

Cite item

Full Text

Abstract

Sarcoidosis and tuberculosis are both granulomatous diseases that have many similarities, making the differential diagnosis of sarcoidosis and tuberculosis difficult, as well as leading to inappropriate treatment selection of both diseases. Autoimmune inflammation (AI) is one of the processes identified tuberculosis and sarcoidosis. Current evidences about the risk and clinical outcomes of COVID-19 infection in patient with sarcoidosis and M. tuberculosis co-infection are still not well understood. SARS-CoV-2 has direct damage to the epithelial cells of the respiratory system, and in-directly due to circulatory disorders. Materials and methods. In the study we analyzed characteristics of autoimmune response in patients with granulomatosis diseases (tuberculosis and sarcoidosis) after COVID-19. We have analyzed articles for the period of December 2019 to March 2023, published in international database (“Medline”, “PubMed”, “Scopus”). The keywords we used “COVID-19”, “SARS-CoV-2”, “tuberculosis”, “sarcoidosis”, “granulomatosis diseases”, “T cells”, “B cells”, “Treg”, “follicular Treg” and “Treg subsets”. The narrative review was carried out in accordance with the PRISMA protocol (http://www.prisma-statement.org) used for this type of study (ID-423604). Results. The influence of COVID-19 infection can also make a significant contribution to the violation of the T- and B-cell immune response, the violation of the nature of cellular metabolism, which will affect the course of granulomatous inflammation in various ways. According to the different researches, autoimmune inflammation can be an important protective mechanism in sarcoidosis and, at the same time, exacerbates the course of tuberculosis infection with the disease progression and pathogen drug resistance formation subsequently. The study of immune response features in patients with COVID-19 showed the presence of several similar characteristics in cellular components of the immune response. Conclusion. Evidence of the presence of autoimmune inflammation in patients with these granulomatous lung diseases, the development of patient immunotypes, including the transferred COVID-19, will be a significant contribution to the development of personalized patient management tactics, taking into account the identified violations of the immune response mechanisms.

About the authors

A. A. Starshinova

St. Petersburg State University; Almazov National Medical Research Centre

Email: arrubin6@mail.ru

DSc (Medicine), Head Researcher, Laboratory of Probabilistic Methods of Analysis, Mathematics Department; Head of the Research Department

Russian Federation, St. Petersburg; St. Petersburg

I. V. Kudryavtsev

Institution of Experimental Medicine

Email: arrubin6@mail.ru

PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology

Russian Federation, St. Petersburg

A. A. Rubinstein

Institution of Experimental Medicine

Author for correspondence.
Email: arrubin6@mail.ru

Junior Researcher, Cell Immunology Laboratory, Department of Immunology

Russian Federation, St. Petersburg

A. Malkova

Ariel University

Email: arrubin6@mail.ru

PhD Student, Department of Molecular Biology, Faculty of Natural Sciences

Israel, Ariel

H. Ling

Harbin Medical University

Email: arrubin6@mail.ru

DSc (Medicine), Department of Microbiology, Immunology, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology

China, Harbin

M. Zhuang

Harbin Medical University

Email: arrubin6@mail.ru

DSc (Medicine), Department of Microbiology, Immunology, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology

China, Harbin

A. Yu. Starshinova

St. Petersburg State Pediatric Medical University

Email: arrubin6@mail.ru

Student of Medicine Department

Russian Federation, St. Petersburg

I. F. Dovgaluk

St. Petersburg Research Institute of Phthisiopulmonology

Email: arrubin6@mail.ru

DSc (Medicine), Professor, Leading Researcher, Head of Pediatric Tuberculosis Department

Russian Federation, St. Petersburg

D. A. Kudlay

I.M. Sechenov First Moscow State Medical University; Institute of Immunology FMBA of Russia

Email: arrubin6@mail.ru

DSc (Medicine), Professor of Pharmacology Department, Institute of Pharmacy; Leading Researcher, Laboratory of Personalized Medicine and Molecular Immunology

Russian Federation, Moscow; Moscow

References

  1. Abebe F. Immunological basis of early clearance of Mycobacterium tuberculosis infection: the role of natural killer cells. Clin. Exp. Immunol., 2021, vol. 204, no. 1, pp. 32–40. doi: 10.1111/cei.13565
  2. Abreu M.T., Carvalheiro H., Rodrigues-Sousa T., Domingos A., Segorbe-Luis A., Rodrigues-Santos P., Souto-Carneiro M.M. Alterations in the peripheral blood B cell subpopulations of multidrug-resistant tuberculosis patients. Clin. Exp. Med., 2014, vol. 14, pp. 423–429. doi: 10.1007/s10238-013-0258-1
  3. Adamo S., Michler J., Zurbuchen Y., Cervia C., Taeschler P., Raeber M.E., Baghai Sain S., Nilsson J., Moor A.E., Boyman O. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature, 2022, vol. 602, no. 7895, pp. 148–155. doi: 10.1038/s41586-021-04280-x
  4. Ahmed A., Adiga V., Nayak S., Uday Kumar J.A.J., Dhar C., Sahoo P.N., Sundararaj B.K., Souza G.D., Vyakarnam A. Circulating HLA-DR+CD4+ effector memory T cells resistant to CCR5 and PD-L1 mediated suppression compromise regulatory T cell function in tuberculosis. PLoS Pathog. 2018, vol. 14, no. 9: e1007289. doi: 10.1371/journal.ppat.1007289
  5. Akiyama M., Yasuoka H., Yamaoka K., Suzuki K., Kaneko Y., Kondo H., Kassai Y., Koga K., Miyazaki T., Morita R., Yoshimura A., Takeuchi T. Enhanced IgG4 production by follicular helper 2 T cells and the involvement of follicular helper 1 T cells in the pathogenesis of IgG4-related disease. Arthritis. Res. Ther., 2016, no. 18: 167. doi: 10.1186/s13075-016-1064-4
  6. Аkthivel P., Bruder D., Mechanism of granuloma formation in sarcoidosis. Curr. Opin. Hematol., 2017, vol. 24, pp. 59–65. doi: 10.1097/MOH.0000000000000301
  7. Al Balushi A., AlShekaili J., Al Kindi M., Ansari Z., Al-Khabori M., Khamis F., Ambusaidi Z., Al Balushi A., Al Huraizi A., Al Sulaimi S., Al Fahdi F., Al Balushi I., Pandak N., Fletcher T., Nasr I. Immunological predictors of disease severity in patients with COVID-19. Int. J. Infect. Dis., 2021, vol. 110, pp. 83–92. doi: 10.1016/j.ijid.2021.06.056
  8. Alosaimi B., Mubarak A., Hamed M.E., Almutairi A.Z., Alrashed A.A., AlJuryyan A., Enani M., Alenzi F.Q., Alturaiki W. Complement Anaphylatoxins and Inflammatory Cytokines as Prognostic Markers for COVID-19 Severity and In-Hospital Mortality. Front. Immunol., 2021, no. 12: 668725. doi: 10.3389/fimmu.2021.668725
  9. Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol., 2015, vol. 135, no. 3, pp. 626–35. doi: 10.1016/j.jaci.2014.11.001
  10. Bagavant H., Cizio K., Araszkiewicz A.M., Papinska J.A., Garman L., Li C., Pezant N., Drake W.P., Montgomery C.G., Deshmukh U.S. Systemic immune response to vimentin and granuloma formation in a model of pulmonary sarcoidosis. J. Transl. Autoimmun., 2022, no. 5: 100153. doi: 10.1016/j.jtauto.2022.100153
  11. Belyaeva I.V., Kosova A.N., Vasiliev A.G. Tuberculosis and Autoimmunity. Pathophysiology, 2022, vol. 29, no. 3, pp. 469–470. doi: 10.3390/pathophysiology29020022
  12. Billiau A., Matthys P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol., 2001, vol. 70, no. 6, pp. 849–860
  13. Billottet C., Quemener C., Bikfalvi A. CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim. Biophys. Acta, 2013, vol. 1836, no. 2, pp. 287–295. doi: 10.1016/j.bbcan.2013.08.002
  14. Blank M., Barzilai O., Shoenfeld Y. Molecular mimicry and auto-immunity. Clin. Rev. Allergy Immunol., 2007, vol. 32, no. 1, pp. 111–118. doi: 10.1007/BF02686087
  15. Boechat J.L., Chora I., Morais A., Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology — current perspectives. Pulmonology, 2021, vol. 27, no. 5, pp. 423–437. doi: 10.1016/j.pulmoe.2021.03.008
  16. Borham M., Oreiby A., El-Gedawy A., Hegazy Y., Khalifa H.O., Al-Gaabary M., Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens, 2022, vol. 11, no. 7: 715. doi: 10.3390/pathogens11070715
  17. Broos C.E., van Nimwegen M., Hoogsteden H.C., Hendriks R.W., Kool M., van den Blink B. Granuloma formation in pulmonary sarcoidosis. Front. Immunol., 2013, no. 4: 437. doi: 10.3389/fimmu.2013.00437
  18. Broos C.E., van Nimwegen M., Kleinjan A., et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res. 2015, vol. 16, no. 1: 108. doi: 10.1186/s12931-015-0265-8
  19. Busuttil A., Weigt S.S., Keane M.P., Xue Y.Y., Palchevskiy V., Burdick M.D., Huang C., Zisman D.A., Fishbein M., Lynch J.P.3rd, Strieter R.M., Elashoff R.M., Belperio J.A. CXCR3 ligands are augmented during the pathogenesis of pulmonary sarcoidosis. Eur. Respir. J., 2009, vol. 34, no. 3, pp. 676–686. doi: 10.1183/09031936.00157508
  20. Cain H., Kraus B. Immunofluorescence microscopic demonstration of vimentin filaments in asteroid bodies of sarcoidosis. A comparison with electron microscopic findings. Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol., 1983, vol. 42, no. 2, pp. 213–226. doi: 10.1007/bf02890384
  21. Cardona P., Cardona P.-J. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front. Immunol., 2019, vol. 10: 2139. doi: 10.3389/fimmu.2019.02139
  22. Caso F., Costa L., Ruscitti P., Navarini L., Del Puente A., Giacomelli R., Scarpa R. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun. Rev., 2020, vol. 19, no. 5: 102524. doi: 10.1016/j.autrev.2020.102524
  23. Chen X., Huang J., Huang Y., Chen J., Huang Y., Jiang X., Shi Y. Characteristics of immune cells and cytokines in patients with coronavirus disease 2019 in Guangzhou, China. Hum. Immunol., 2020, vol. 81, no. 12, pp. 702–708. doi: 10.1016/j.humimm.2020.08.006
  24. Chen X., Zhang M., Liao M., Graner M.W., Wu C., Yang Q., Liu H., Zhou B Reduced Th17 response in patients with tuberculosis correlates with IL-6R expression on CD4+ T Cells. Am. J. Respir. Crit. Care Med., 2010, vol. 181, no. 7, pp. 734–742. doi: 10.1164/rccm.200909-1463OC
  25. Chen Y.C., Chin C.H., Liu S.F., Wu C.C., Tsen C.C., Wang Y.H., Chao T.Y., Lie C.H., Chen C.J., Wang C.C., Lin M.C. Prognostic values of serum IP-10 and IL-17 in patients with pulmonary tuberculosis. Dis. Markers, 2011, vol. 31, no. 2, pp. 101–110. doi: 10.3233/DMA-2011-0808
  26. Cheng M.P., Butler-Laporte G., Parkes L.O., Bold T.D., Fritzler M.J., Behr M.A. Prevalence of Auto-antibodies in Pulmonary Tuberculosis. Open Forum Infect. Dis., 2019, vol. 6, no. 4: ofz114. doi: 10.1093/ofid/ofz114
  27. Chiacchio T., Casetti R., Butera O., Vanini V., Carrara S., Girardi E., Di Mitri D., Battistini L., Martini F., Borsellino G., Goletti D. Characterization of regulatory T cells identified as CD4(+)CD25(high)CD39(+) in patients with active tuberculosis. Clin. Exp. Immunol., 2009, vol. 156, no. 3, pp. 463–70. doi: 10.1111/j.1365-2249.2009.03908.x
  28. Cinetto F., Scarpa R., Dell’Edera A., Jones M.G., Immunology of sarcoidosis: old companions, new relationships. Curr. Opin. Pulm. Med., 2020, vol. 26, pp. 535–543. doi: 10.1097/MCP.0000000000000711
  29. D’Alessandro M., Bergantini L., Cameli P., Mezzasalma F., Refini R.M., Pieroni M., Sestini P., Bargagli E. Adaptive immune system in pulmonary sarcoidosis — comparison of peripheral and alveolar biomarkers. Clin. Exp. Immunol., 2021, vol. 205, no. 3, pp. 406–416. doi: 10.1111/cei.13635
  30. D’Alessandro M., Bergantini L., Gangi S., Cameli P., Armati M., Fanetti M., Mezzasalma F., Baglioni S., Sarc-Si Study Group, Bargagli E. Imbalance of Lymphocyte Subsets and CD45RA-Expressing Cells in Intrathoracic Lymph Nodes, Alveolar Compartment and Bloodstream of Pulmonary Sarcoidosis Patients. Int. J. Mol. Sci., 2023, vol. 24, no. 12: 10344. doi: 10.3390/ijms241210344
  31. De Biasi S., Lo Tartaro D., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidanza L., Mattioli M., Paolini A., Gozzi L., Jaacoub D., Faltoni M., Volpi S., Milić J., Sita M., Sarti M., Pucillo C., Girardis M., Guaraldi G., Mussini C., Cossarizza A. Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVID-19 patients with pneumonia. Eur. J. Immunol., 2020, vol. 50, no. 9, pp. 1283–1294. doi: 10.1002/eji.202048838
  32. Ding J., Dai J., Cai H., Gao Q., Wen Y. Extensively disturbance of regulatory T cells — Th17 cells balance in stage II pulmonary sarcoidosis. Int. J. Med. Sci., 2017, vol. 14, no. 11, pp. 1136–1142. doi: 10.7150/ijms.18838
  33. Dubaniewicz A. Mycobacterium tuberculosis heat shock proteins and autoimmunity in sarcoidosis. Autoimmun. Rev., 2010, vol. 9, no. 6, pp. 419–424. doi: 10.1016/j.autrev.2009.11.015
  34. Elkington P., Tebruegge M., Mansour S. Tuberculosis: an Infection-Initiated Autoimmune Disease? Trends Immunol., 2016, vol. 37, no. 12, pp. 815–818. doi: 10.1016/j.it.2016.09.007
  35. Erre G.L., Cossu D., Masala S., Mameli G., Cadoni M.L., Serdino S., Longu M.G., Passiu G., Sechi L.A. Mycobacterium tuberculosis lipoarabinomannan antibodies are associated to rheumatoid arthritis in Sardinian patients. Clin. Rheumatol., 2014, vol. 33, no. 12, pp. 1725–1729. doi: 10.1007/s10067-014-2678-z
  36. Fathi F., Sami R., Mozafarpoor S., Hafezi H., Motedayyen H., Arefnezhad R., Eskandari N. Immune system changes during COVID-19 recovery play key role in determining disease severity. Int. J. Immunopathol. Pharmacol., 2020, no. 34: 2058738420966497. doi: 10.1177/2058738420966497
  37. Ferrantelli F., Chiozzini C., Manfredi F., Leone P., Spada M., Di Virgilio A., Giovannelli A., Sanchez M., Cara A., Michelini Z., Federico M. Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses, 2022, vol. 14, no. 2: 329. doi: 10.3390/v14020329
  38. Fischer A., Ellinghaus D., Nutsua M., Hofmann S., Montgomery C.G., Iannuzzi M.C., Rybicki B.A., Petrek M., Mrazek F., Pabst S., Grohé C., Grunewald J., Ronninger M., Eklund A., Padyukov L., Mihailovic-Vucinic V., Jovanovic D., Sterclova M., Homolka J., Nöthen M.M., Herms S., Gieger C., Strauch K., Winkelmann J., Boehm B.O., Brand S., Büning C., Schürmann M., Ellinghaus E., Baurecht H., Lieb W., Nebel A., Müller-Quernheim J., Franke A., Schreiber S.; GenPhenReSa Consortium. Identification of Immune-Relevant Factors Conferring Sarcoidosis Genetic Risk. Am. J. Respir. Crit. Care Med., 2015, vol. 192, no. 6, pp. 727–736. doi: 10.1164/rccm.201503-0418OC
  39. Fischer A., Rybicki B.A. Granuloma genes in sarcoidosis: what is new? Curr. Opin. Pulm. Med., 2015, vol. 21, no. 5, pp. 510–516. doi: 10.1097/MCP.0000000000000189
  40. Gong F., Dai Y., Zheng T., Cheng L., Zhao D., Wang H., Liu M., Pei H., Jin T., Yu D., Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6588–6599. doi: 10.1172/JCI141054
  41. Groom J.R., Luster A.D. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell. Biol., 2011, vol. 89, no. 2, pp. 207–215. doi: 10.1038/icb.2010.158
  42. Gutiérrez-Bautista J.F., Rodriguez-Nicolas A., Rosales-Castillo A., Jiménez P., Garrido F., Anderson P., Ruiz-Cabello F., López-Ruz M.Á. Negative Clinical Evolution in COVID-19 Patients Is Frequently Accompanied With an Increased Proportion of Undifferentiated Th Cells and a Strong Underrepresentation of the Th1 Subset. Front. Immunol., 2020, no. 11: 596553. doi: 10.3389/fimmu.2020.596553
  43. Guyot-Revol V., Innes J.A., Hackforth S., Hinks T., Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am. J. Respir. Crit. Care Med., 2006, vol. 173, pp. 803–810. doi: 10.1164/rccm.200508-1294OC
  44. Habel J.R., Nguyen T.H.O., van de Sandt C.E., Juno J.A., Chaurasia P., Wragg K., Koutsakos M., Hensen L., Jia X., Chua B., Zhang W., Tan H.X., Flanagan K.L., Doolan D.L., Torresi J., Chen W., Wakim L.M., Cheng A.C., Doherty P.C., Petersen J., Rossjohn J., Wheatley A.K., Kent S.J., Rowntree L.C., Kedzierska K. Suboptimal SARS-CoV-2-specific CD8+ T cell response associated with the prominent HLA-A*02:01 phenotype. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 39, pp. 24384–24391. doi: 10.1073/pnas.2015486117
  45. Halim L., Romano M., McGregor R., Correa I., Pavlidis P., Grageda N., Hoong S.J., Yuksel M., Jassem W., Hannen R.F., Ong M., Mckinney O., Hayee B., Karagiannis S.N., Powell N., Lechler R.I., Nova-Lamperti E., Lombardi G. An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment. Cell. Rep., 2017, vol. 20, no. 3, pp. 757–770. doi: 10.1016/j.celrep.2017.06.079
  46. Hingley-Wilson S.M., Connell D., Pollock K., Hsu T., Tchilian E., Sykes A., Grass L., Potiphar L., Bremang S., Kon O.M., Jacobs W.R. Jr., Lalvani A. ESX1-dependent fractalkine mediates chemotaxis and Mycobacterium tuberculosis infection in humans. Tuberculosis (Edinb.), 2014, vol. 94, no. 3, pp. 262–270. doi: 10.1016/j.tube.2014.01.004
  47. Hu B., Huang S., Yin L. The cytokine storm and COVID-19. J. Med. Virol., 2021, vol. 93, no. 1, pp. 250–256. doi: 10.1002/jmv.26232
  48. Huang H., Lu Z., Jiang C., Liu J., Wang Y., Xu Z. Imbalance between Th17 and regulatory T-Cells in sarcoidosis. Int. J. Mol. Sci., 2013, vol. 14, no. 11, pp. 21463–21473. doi: 10.3390/ijms141121463
  49. Joosten S.A., van Meijgaarden K.E., Del Nonno F., Baiocchini A., Petrone L., Vanini V., Smits H.H., Palmieri F., Goletti D., Ottenhoff T.H. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathog., 2016, vol. 12, no. 6: e1005687. doi: 10.1371/journal.ppat.1005687
  50. Kakumanu P., Yamagata H., Sobel E.S., Reeves W.H., Chan E.K., Satoh M. Patients with pulmonary tuberculosis are frequently positive for anti-cyclic citrullinated peptide antibodies, but their sera also react with unmodified arginine-containing peptide. Arthritis Rheum., 2008, vol. 58, no. 6, pp. 1576–1581. doi: 10.1002/art.23514
  51. Kalfaoglu B., Almeida-Santos J., Tye C.A., Satou Y., Ono M. T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Front. Immunol., 2020, no. 11: 589380. doi: 10.3389/fimmu.2020.589380
  52. Kalinina O., Golovkin A., Zaikova E., Aquino A., Bezrukikh V., Melnik O., Vasilieva E., Karonova T., Kudryavtsev I., Shlyakhto E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int. J. Mol. Sci., 2022, vol. 23, no. 16: 8879. doi: 10.3390/ijms23168879
  53. Kanduc D., Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin. Immunol., 2020, no. 215: 108426. doi: 10.1016/j.clim.2020.108426
  54. Kaneko N., Kuo H.H., Boucau J., Farmer J.R., Allard-Chamard H., Mahajan V.S., Piechocka-Trocha A., Lefteri K., Osborn M., Bals J., Bartsch Y.C., Bonheur N., Caradonna T.M., Chevalier J., Chowdhury F., Diefenbach T.J., Einkauf K., Fallon J., Feldman J., Finn K.K., Garcia-Broncano P., Hartana C.A., Hauser B.M., Jiang C., Kaplonek P., Karpell M., Koscher E.C., Lian X., Liu H., Liu J., Ly N.L., Michell A.R., Rassadkina Y., Seiger K., Sessa L., Shin S., Singh N., Sun W., Sun X., Ticheli H.J., Waring M.T., Zhu A.L., Alter G., Li J.Z., Lingwood D., Schmidt A.G., Lichterfeld M., Walker B.D., Yu X.G., Padera R.F. Jr., Pillai S.; Massachusetts Consortium on Pathogen Readiness Specimen Working Group. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell, 2020, vol. 183, no. 1, pp. 143–157.e13. doi: 10.1016/j.cell.2020.08.025
  55. Kim S.H., Kim J., Jang J.Y., Noh H., Park J., Jeong H., Jeon D., Uhm C., Oh H., Cho K., Jeon Y., On D, Yoon S., Lim S.Y., Kim S.P., Lee Y.W., Jang H.J., Park I.H., Oh J., Seo J.S., Kim J.J., Seok S.H., Lee Y.J., Hong S.M., An S.H., Kim S.Y., Kim Y.B., Hwang J.Y., Lee H.J., Kim H.B., Choi K.S., Park J.W., Seo J.Y., Yun J.W., Shin J.S., Lee H.Y., Kim K., Lee D., Lee H., Nam K.T., Seong J.K. Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits. Front. Immunol., 2022, no. 13: 1055811. doi: 10.3389/fimmu.2022.1055811
  56. Kita S., Tsuda T., Sugisaki K., Miyazaki E., Matsumoto T. Characterization of distribution of T lymphocyte subsets and activated T lymphocytes infiltrating into sarcoid lesions. Intern. Med., 1995, vol. 34, no. 9, pp. 847–855. doi: 10.2169/internalmedicine.34.847
  57. Korobova Z.R., Arsentieva N.A., Liubimova N.E., Batsunov O.K., Dedkov V.G., Gladkikh A.S., Sharova A.A., Adish Z., Chernykh E.I., Kaschenko V.A., Ratnikov V.A., Gorelov V.P., Stanevich O.V., Kulikov A.N., Pevtsov D.E., Totolian A.A. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int. J. Mol. Sci., 2022, vol. 23, no. 22: 14146. doi: 10.3390/ijms232214146
  58. Koutsakos M., Rowntree L.C., Hensen L., Chua B.Y., van de Sandt C.E., Habel J.R., Zhang W., Jia X., Kedzierski L., Ashhurst T.M., Putri G.H., Marsh-Wakefield F., Read M.N., Edwards D.N., Clemens E.B., Wong C.Y., Mordant F.L., Juno J.A., Amanat F., Audsley J., Holmes N.E., Gordon C.L., Smibert O.C., Trubiano J.A., Hughes C.M., Catton M., Denholm J.T., Tong S.Y.C., Doolan D.L., Kotsimbos T.C., Jackson D.C., Krammer F., Godfrey D.I., Chung A.W., King N.J.C., Lewin S.R., Wheatley A.K., Kent S.J., Subbarao K., McMahon J., Thevarajan I., Nguyen T.H.O., Cheng A.C., Kedzierska K. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell. Rep. Med., 2021, vol. 2, no. 3: 100208. doi: 10.1016/j.xcrm.2021.100208
  59. Kozlov V.A., Savchenko A.A., Kudryavtsev I.V., Kozlov I.G., Kudlay D.A., Prodeus A.P., Borisov, A.G. Clinical Immunology. Krasnoyarsk: Polycor, Russia, 2020. 386 p. (In Russ.)
  60. Kozlov V.A., Tikhonova E.P., Savchenko A.A., Kudryavtsev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitovetsky D. .E., Kalinina Yu.S., Kasparov E.V., Kozlov I.G., Korsunsky I.A., Kudlay D.A., Kuzmina T.Yu., Minoranskaya N.S., Prodeus A.P. ., Starikova E.A., Cherdantsev D.V., Chesnokov A.B., Gear P.A., Borisov A.G. Clinical immunology. A practical guide for infectious disease specialists. Krasnoyarsk: Polikor, 2021. 563 p. (In Russ.). doi: 10.17513/np.438
  61. Kratzer B., Trapin D., Ettel P., Körmöczi U., Rottal A., Tuppy F., Feichter M., Gattinger P., Borochova K., Dorofeeva Y., Tulaeva I., Weber M., Grabmeier-Pfistershammer K., Tauber P.A., Gerdov M., Mühl B., Perkmann T., Fae I., Wenda S., Führer H., Henning R., Valenta R., Pickl W.F. Immunological imprint of COVID-19 on human peripheral blood leukocyte populations. Allergy, 2021, vol. 76, no. 3, pp. 751–765. doi: 10.1111/all.14647
  62. Kudryavtsev I., Rubinstein A., Golovkin A., Kalinina O., Vasilyev K., Rudenko L., Isakova-Sivak I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses, 2022, vol. 14, no. 5: 1082. doi: 10.3390/v14051082
  63. Kudryavtsev I., Serebriakova M., Starshinova A., Zinchenko Y., Basantsova N., Malkova A., Soprun L., Churilov L.P., Toubi E., Yablonskiy P., Shoenfeld Y. Imbalance in B cell and T Follicular Helper Cell Subsets in Pulmonary Sarcoidosis. Sci. Rep., 2020, vol. 10, no. 1: 1059. doi: 10.1038/s41598-020-57741-0
  64. Kudryavtsev I., Zinchenko Y., Starshinova A., Serebriakova M., Malkova A., Akisheva T., Kudlay D., Glushkova A., Yablonskiy P., Shoenfeld Y. Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis. Diagnostics (Basel)., 2023, vol. 13, no. 8: 1378. doi: 10.3390/diagnostics13081378
  65. Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtcov D.E., Totolian A.A. Alterations in B Cell and Follicular T-Helper Cell Subsets in Patients with Acute COVID-19 and COVID-19 Convalescents. Curr. Issues Mol. Biol., 2021, vol. 44, no. 1, pp. 194–205. doi: 10.3390/cimb44010014
  66. Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients. Viruses, 2022, vol. 14, no. 9: 1906. doi: 10.3390/v14091906
  67. Kudryavtsev I.V., Lazareva N.M., Baranova O.P., Golovkin A.S., Isakov D.V., Serebriakova M.K., Ses T.P., Ilkovich M.M., Totolian Areg A. CD39+ expression by regulatory T cells in pulmonary sarcoidosis and Lofgren’s syndrome. Medical Immunol. (Russia), 2019, vol. 21, no. 3, pp. 467–478. doi: 10.15789/1563-0625-2019-3-467-478
  68. Kudryavtsev I.V., Lazareva N.M., Baranova O.P., Serebriakova M.K., Ses’ T.P., Ilkovich M.M., Totolian A.A. Peripheral blood T helper cell subsets in Löfgren’s and non-Löfgren’s syndrome patients. Medical Immunology (Russia), 2022, vol. 24, no. 3, pp. 573–586. (In Russ.). doi: 10.15789/1563-0625-PBT-2468
  69. Kudryavtsev I.V., Serebriakova M.K., Starshinova A.A., Zinchenko Yu.S., Basantsova N.Yu., Belyaeva E.N., Pavlova M.V., Yablonskiy P.K. Altered peripheral blood Th17 and follicular T-helper subsets in patients with pulmonary tuberculosis. Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 304–314. doi: 10.15789/2220-7619-2019-2-304-314
  70. Kumar P., Saini S., Khan S., Surendra Lele S., Prabhakar B.S. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell. Immunol., 2019, vol. 339, pp. 41–49. doi: 10.1016/j.cellimm.2018.09.008
  71. Laing A.G., Lorenc A., Del Molino Del Barrio I., Das A., Fish M., Monin L., Muñoz-Ruiz M., McKenzie D.R., Hayday T.S., Francos-Quijorna I., Kamdar S., Joseph M., Davies D., Davis R., Jennings A., Zlatareva I., Vantourout P., Wu Y., Sofra V., Cano F., Greco M., Theodoridis E., Freedman J.D., Gee S., Chan J.N.E., Ryan S., Bugallo-Blanco E., Peterson P., Kisand K., Haljasmägi L., Chadli L., Moingeon P., Martinez L., Merrick B., Bisnauthsing K., Brooks K., Ibrahim M.A.A., Mason J., Lopez Gomez F., Babalola K., Abdul-Jawad S., Cason J., Mant C., Seow J., Graham C., Doores K.J., Di Rosa F., Edgeworth J., Shankar-Hari M., Hayday A.C. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med., 2020, vol. 26, no. 10, pp. 1623–1635. doi: 10.1038/s41591-020-1038-6
  72. Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. CXCR3 chemokine receptor ligands in sarcoidosis. Medical Immunology (Russia), 2021, vol. 23, no. 1, pp. 73–86. (In Russ.). doi: 10.15789/1563-0625-CCR-2181
  73. Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Isakov D.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. chemokines CCL17 and CCL22 in sarcoidosis. Medical Immunology (Russia), 2021, vol. 23, no. 4, pp. 791–798. (In Russ.). doi: 10.15789/1563-0625-CCA-2340
  74. Lazareva N., Kudryavtsev I., Baranova O., Serebriakova M., Ses’ T., Ilkovich M., Totolyan A. Peripheral blood cytotoxic T cells in patients with sarcoidosis. Russian Journal of Immunology, 2018, vol. 12, no. 3, pp. 348–353. doi: 10.31857/S102872210002408-3
  75. Li Y., Wei C., Xu H., Jia J., Wei Z., Guo R., Jia Y., Wu Y., Li Y., Qi X., Li Z., Gao X. The Immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators Inflamm., 2018, no. 2018: 6587296. doi: 10.1155/2018/6587296
  76. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect., 2020, vol. 9, pp. 727–732. doi: 10.1080/22221751.2020.1746199
  77. Linke M., Pham H.T., Katholnig K., Schnöller T., Miller A., Demel F., Schütz B., Rosner M., Kovacic B., Sukhbaatar N., Niederreiter B., Blüml S., Kuess P., Sexl V., Müller M., Mikula M., Weckwerth W., Haschemi A., Susani M., Hengstschläger M., Gambello M.J., Weichhart T. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat. Immunol., 2017, vol. 18, no. 3, pp. 293–302. doi: 10.1038/ni.3655
  78. Lo C.Y., Huang Y.C., Huang H.Y., Chung F.T., Lin C.W., Chung K.F., Wang C.H. Increased Th1 Cells with Disease Resolution of Active Pulmonary Tuberculosis in Non-Atopic Patients. Biomedicines, 2021, vol. 9, no. 7: 724. doi: 10.3390/biomedicines9070724
  79. Ly N.T.M., Ueda-Hayakawa I., Nguyen C.T.H., Okamoto H. Exploring the imbalance of circulating follicular helper CD4+ T cells in sarcoidosis patients. J. Dermatol. Sci., 2020, vol. 97, no. 3, pp. 216–224. doi: 10.1016/j.jdermsci.2020.02.002
  80. Lyadova I.V., Panteleev A.V. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm, 2015, no. 2015: 854507. doi: 10.1155/2015/854507
  81. Machado Ribeiro F., Goldenberg T. Mycobacteria and autoimmunity. Lupus, 2015, vol. 24, no. 4–5, pp. 374–381. doi: 10.1177/0961203314559634
  82. Malkova A., Kudlay D., Kudryavtsev I., Starshinova A., Yablonskiy P., Shoenfeld Y. Immunogenetic Predictors of Severe COVID-19. Vaccines (Basel.), 2021, vol. 9, no. 3: 211. doi: 10.3390/vaccines9030211
  83. Mani R., Gupta M., Malik A., Tandon R., Prasad R., Bhatnagar R., Banerjee N. Adjuvant Potential of Poly-α-l-Glutamine from the Cell Wall of Mycobacterium tuberculosis. Infect. Immun., 2018, vol. 86, no. 10: pii: e00537-18. doi: 10.1128/IAI.00537-18
  84. Martonik D., Parfieniuk-Kowerda A., Rogalska M., Flisiak R. The Role of Th17 Response in COVID-19. Cells, 2021, vol. 10, no. 6: 1550. doi: 10.3390/cells10061550
  85. Mathew D., Giles J.R., Baxter A.E., Greenplate A.R., Wu J.E., Alanio C., Oldridge D.A., Kuri-Cervantes L., Pampena M.B., D’Andrea K., Manne S., Chen Z., Huang Y.J., Reilly J.P., Weisman A.R., Ittner C.A.G., Kuthuru O., Dougherty J., Nzingha K., Han N., Kim J., Pattekar A., Goodwin E.C., Anderson E.M., Weirick M.E., Gouma S., Arevalo C.P., Bolton M.J., Chen F., Lacey S.F., Hensley S.E., Apostolidis S., Huang A.C., Vella L.A.; UPenn COVID Processing Unit; Betts M.R., Meyer N.J., Wherry E.J. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv, 2020: 2020.05.20.106401 [Preprint]. doi: 10.1101/2020.05.20.106401
  86. Mertz P., Jeannel J., Guffroy A., Lescuyer S., Korganow A.S., Rondeau-Lutz M., Weber J.C. Granulomatous manifestations associated with COVID19 infection: Is there a link between these two diseases? Autoimmun Rev., 2021, vol. 20, no. 6: 102824. doi: 10.1016/j.autrev.2021.102824
  87. Miyara M., Amoura Z., Parizot C., Badoual C., Dorgham K., Trad S., Kambouchner M., Valeyre D., Chapelon-Abric C., Debré P., Piette J.C., Gorochov G. The immune paradox of sarcoidosis and regulatory T cells. J. Exp. Med., 2006, vol. 203, no. 2, pp. 359–370. doi: 10.1084/jem.20050648
  88. Mohebbi S.R., Baghaei K., Rostami-Nejad M., Nazemalhosseini Mojarad E., Mirjalali H., Yadegar A., Asri N., Abdoulahi S., Assadzadeh Aghdaei H. Significant changes of CD4, FOXP3, CD25, and IL6 expression level in Iranian COVID-19 patients. Gastroenterol. Hepatol. Bed. Bench., 2020, vol. 13, no. 4, pp. 388–392.
  89. Musaelyan A., Lapin S., Nazarov V., Tkachenko O., Gilburd B., Mazing A., Mikhailova L., Shoenfeld Y. Vimentin as antigenic target in autoimmunity: a comprehensive review. J. Autoimmun. Rev., 2018, vol. 17, no. 9, pp. 926–934. doi: 10.1016/j.autrev.2018.04.004
  90. Nureki S., Miyazaki E., Ando M., Ueno T., Fukami T., Kumamoto T., Sugisaki K., Tsuda T. Circulating levels of both Th1 and Th2 chemokines are elevated in patients with sarcoidosis. Respir. Med., 2008, vol. 102, no. 2, pp. 239–247. doi: 10.1016/j.rmed.2007.09.006
  91. Odak I., Barros-Martins J., Bošnjak B., Stahl K., David S., Wiesner O., Busch M., Hoeper M.M., Pink I., Welte T., Cornberg M., Stoll M., Goudeva L., Blasczyk R., Ganser A., Prinz I., Förster R., Koenecke C., Schultze-Florey C.R. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine, 2020, no. 57: 102885. doi: 10.1016/j.ebiom.2020.102885
  92. Ogongo P., Tezera L.B., Ardain A., Nhamoyebonde S., Ramsuran D., Singh A., Ng’oepe A, Karim F., Naidoo T., Khan K., Dullabh K.J., Fehlings M., Lee B.H., Nardin A., Lindestam Arlehamn C.S., Sette A., Behar S.M., Steyn A.J., Madansein R., Kløverpris H.N., Elkington P.T., Leslie A. Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. J. Clin. Invest., 2021, vol. 131, no. 10: e142014. doi: 10.1172/JCI142014
  93. Okamoto Yoshida Y., Umemura M., Yahagi A., O’Brien R.L., Ikuta K., Kishihara K., Hara H., Nakae S., Iwakura Y., Matsuzaki G. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J. Immunol., 2010, vol. 184, no. 8, pp. 4414–4422. doi: 10.4049/jimmunol.0903332
  94. Patterson K.C., Chen E.S. The Pathogenesis of Pulmonary Sarcoidosis and Implications for Treatme Ribeiro F.M., Goldenberg T. Mycobacteria and autoimmunity. Lupus, 2015, vol. 24, no. 4–5, pp. 374–381. doi: 10.1177/0961203314559634
  95. Peng X., Ouyang J., Isnard S., Lin J., Fombuena B., Zhu B., Routy J.P. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front. Immunol., 2020, no. 11: 596631. doi: 10.3389/fimmu.2020.596631
  96. Pérez-Gómez A., Gasca-Capote C., Vitallé J., Ostos F.J., Serna-Gallego A., Trujillo-Rodríguez M., Muñoz-Muela E., Giráldez-Pérez T., Praena-Segovia J., Navarro-Amuedo M.D., Paniagua-García M., García-Gutiérrez M., Aguilar-Guisado M., Rivas-Jeremías I., Jiménez-León M.R., Bachiller S., Fernández-Villar A., Pérez-González A., Gutiérrez-Valencia A., Rafii-El-Idrissi Benhnia M., Weiskopf D., Sette A., López-Cortés L.F., Poveda E., Ruiz-Mateos E.; Virgen del Rocío Hospital COVID-19 and COHVID-GS Working Teams. Deciphering the quality of SARS-CoV-2 specific T-cell response associated with disease severity, immune memory and heterologous response. Clin. Transl. Med., 2022, vol. 12, no. 4: e802. doi: 10.1002/ctm2.802
  97. Prasse A., Georges C.G., Biller H., Hamm H., Matthys H., Luttmann W., Virchow J.C. Jr. Th1 cytokine pattern in sarcoidosis is expressed by bronchoalveolar CD4+ and CD8+ T cells. Clin. Exp. Immunol., 2000, vol. 122, no. 2, pp. 241–248. doi: 10.1046/j.1365-2249.2000.01365.x
  98. Radziszewska A., Moulder Z., Jury E.C., Ciurtin C. CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. Int. J. Mol. Sci., 2022, vol. 23, no. 19: 11431. doi: 10.3390/ijms231911431
  99. Ramasamy A., Wang C., Brode W.M., Verduzco-Gutierrez M., Melamed E. Immunologic and Autoimmune-Related Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Clinical Symptoms and Mechanisms of Disease. Phys. Med. Rehabil. Clin. N. Am., 2023, vol. 34, no. 3, pp. 623–642. doi: 10.1016/j.pmr.2023.04.004
  100. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R.,Christian L., Nguyen C.P., Antalek B.J., Benn B.S., Hendriks R.W., van den Blink B., Kool M., Koth L.L. IFN-γ-producing T-Helper 17.1 Cells are increased in sarcoidosis and are more prevalent than T-Helper type 1 Cells. Am.J. Respir. Crit. Care Med., 2016, vol. 193, no. 11, pp. 1281–1291.
  101. Repac J., Mandić M., Lunić T., Božić B., Božić Nedeljković B. Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis-A systematic immunoinformatics analysis of T cell epitopes. PLoS One, 2021, vol. 16, no. 6: e0253918. doi: 10.1371/journal.pone.025391
  102. Richmond B.W., Ploetze K., Isom J., Chambers-Harris I., Braun N.A., Taylor T., Abraham S., Mageto Y., Culver D.A., Oswald-Richter K.A., Drake W.P. Sarcoidosis Th17 cells are ESAT-6 antigen specific but demonstrate reduced IFN-γ expression. J. Clin. Immunol., 2013, vol. 33, no. 2, pp. 446–455. doi: 10.1007/s10875-012-9817-6
  103. Rijnink W.F., Ottenhoff T.H., Joosten S.A. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front. Immunol., 2021, vol. 12: 640168. doi: 10.3389/fimmu.2021.640168
  104. Rojas M., Herrán M., Ramírez-Santana C., Leung P.S.C., Anaya J.M., Ridgway W.M., Gershwin M.E. Molecular mimicry and autoimmunity in the time of COVID-19. J. Autoimmun., 2023, no. 139: 103070. doi: 10.1016/j.jaut.2023.103070
  105. Samuel C.E. Antiviral actions of interferons. Clin. Microbiol. Rev., 2001, vol. 14, no. 4, pp. 778–809. doi: 10.1128/CMR.14.4.778-809.2001
  106. San Segundo D., Arnáiz de Las Revillas F., Lamadrid-Perojo P., Comins-Boo A., González-Rico C., Alonso-Peña M., Irure-Ventura J., Olmos J.M., Fariñas M.C., López-Hoyos M. Innate and Adaptive Immune Assessment at Admission to Predict Clinical Outcome in COVID-19 Patients. Biomedicines, 2021, vol. 9, no. 8: 917. doi: 10.3390/biomedicines9080917
  107. Saris A., Reijnders T.D.Y., Nossent E.J., Schuurman A.R., Verhoeff J., Asten S.V., Bontkes H., Blok S., Duitman J., Bogaard H.J., Heunks L., Lutter R., van der Poll T., Garcia Vallejo J.J.; ArtDECO consortium and the Amsterdam UMC COVID study group. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax, 2021, vol. 76, no. 10, pp. 1010–1019. doi: 10.1136/thoraxjnl-2020-216256
  108. Sattler A., Angermair S., Stockmann H., Heim K.M., Khadzhynov D., Treskatsch S., Halleck F., Kreis M.E., Kotsch K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6477–6489. doi: 10.1172/JCI140965
  109. Saussine A., Tazi A., Feuillet S., Rybojad M., Juillard C., Bergeron A., Dessirier V., Bouhidel F., Janin A., Bensussan A., Bagot M., Bouaziz J.D. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One, 2012, vol. 7, no. 8: e43588. doi: 10.1371/journal.pone.0043588
  110. Scadding J.G. Mycobacterium tuberculosis in the aetiology of sarcoidosis. Br. Med. J., 1960, vol. 2, no. 5213, pp. 1617–1623.
  111. Schultheiß C., Paschold L., Simnica D., Mohme M., Willscher E., von Wenserski L., Scholz R., Wieters I., Dahlke C., Tolosa E., Sedding D.G., Ciesek S., Addo M., Binder M. Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease. Immunity, 2020, vol. 53, no. 2, pp. 442–455.e4. doi: 10.1016/j.immuni.2020.06.024
  112. Sellares J., Strambu I., Crouser E.D., Freudenberg M.A., Gulati M., Hart S., Herzog E., Kolb M., Weichhart T., Drake W.P., Spitzer G., Singh N., Culver D.A. New advances in the development of sarcoidosis models: a synopsis of a symposium sponsored by the Foundation for Sarcoidosis Research. Sarcoidosis Vasc. Diffuse Lung. Dis., 2018, vol. 35, no. 1, pp. 2–4. doi: 10.36141/svdld.v35i1.7032
  113. Semple P.L., Binder A.B., Davids M., Maredza A., van Zyl-Smit R.N., Dheda K. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am. J. Respir. Crit. Care Med., 2013, vol. 187, no. 11, pp. 1249–58. doi: 10.1164/rccm.201210-1934OC
  114. Sève P., Pacheco Y., Durupt F., Jamilloux Y., Gerfaud-Valentin M., Isaac S., Boussel L., Calender A., Androdias G., Valeyre D., El Jammal T. Sarcoidosis: A Clinical Overview from Symptoms to Diagnosis. Cells, 2021, vol. 10, no. 4: 766. doi: 10.3390/cells10040766
  115. Sharma A., Balda S., Apreja M., Kataria K., Capalash N., Sharma P. COVID-19 Diagnosis: Current and Future Techniques. Int. J. Biol. Macromol., 2021, vol. 193 (Pt B), pp. 1835–1844. doi: 10.1016/j.ijbiomac.2021.11.016
  116. Sharp M., Mustafa A.M., Farah N., Bonham C.A. Interstitial Lung Disease and Sarcoidosis. Clin. Chest Med., 2023, vol. 44, no. 3, pp. 575–584. doi: 10.1016/j.ccm.2023.06.003
  117. Shoenfeld Y., Aron-Maor A., Tanai A., Ehrenfeld M. BCG and Autoimmunity: Another Two-Edged Sword. J. Autoimmun., 2001, vol. 16, pp. 235–240. doi: 10.1006/jaut.2000.0494
  118. Song Z., Marzilli L., Greenlee B.M., Chen E.S., Silver R.F., Askin F.B., Teirstein A.S., Zhang Y., Cotter R.J., Moller D.R. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J. Exp. Med., 2005, vol. 201, pp. 755–776. doi: 10.1084/jem.20040429
  119. Sosa-Hernández V.A., Torres-Ruíz J., Cervantes-Díaz R., Romero-Ramírez S., Páez-Franco J.C., Meza-Sánchez D.E., Juárez-Vega G., Pérez-Fragoso A., Ortiz-Navarrete V., Ponce-de-León A., Llorente L., Berrón-Ruiz L., Mejía-Domínguez N.R., Gómez-Martín D., Maravillas-Montero J.L. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Front. Immunol., 2020, vol. 11: 611004. doi: 10.3389/fimmu.2020.611004
  120. Spoerl S., Kremer A.N., Aigner M., Eisenhauer N., Koch P., Meretuk L., Löffler P., Tenbusch M., Maier C., Überla K., Heinzerling L., Frey B., Lutzny-Geier G., Winkler T.H., Krönke G., Vetter M., Bruns H., Neurath M.F., Mackensen A., Kremer A.E., Völkl S. Upregulation of CCR4 in activated CD8+ T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection. Eur. J. Immunol., 2021, vol. 51, no. 6, pp. 1436–1448. doi: 10.1002/eji.202049135
  121. Starshinova A., Malkova А., Kudryavtsev I., Kudlay D., Zinchenko Y., Yablonskiy P. Tuberculosis and autoimmunity: common features. Tuberculosis (Edinb.), 2022, no. 134: 102202. doi: 10.1016/j.tube.2022.102202
  122. Starshinova A., Zinchenko Y., Malkova A., Kudlay D., Kudryavtsev I., Yablonskiy P. Sarcoidosis and Autoimmune Inflammatory Syndrome Induced by Adjuvants. Life (Basel), 2023, vol. 13, no. 4: 1047. doi: 10.3390/life13041047
  123. Starshinova A.A., Malkova A.M., Basantsova N.Y., Zinchenko Y.S., Kudryavtsev I.V., Ershov G.A., Soprun L.A., Mayevskaya V.A., Churilov L.P., Yablonskiy P.K. Sarcoidosis as an Autoimmune Disease. Front. Immunol., 2020, no. 10: 2933. doi: 10.3389/fimmu.2019.02933
  124. Starshinova A.A., Malkova A.M., Zinchenko Yu.S., Basantsova N.Yu., Kudlay D.A. Autoimmune component in the etiology of sarcoidosis. Tuberculosis and Lung Diseases, 2020, vol. 98, no.5, pp. 54–62. doi: 10.21292/2075-1230-2020-98-5-54-62
  125. Starshinova A.A., Malkova A.М., Zinchenko Yu.S., Basantsova N.Yu., Pavlova M.V., Belyaeva E.N., Lapin S.V., Masing A.V., Surkova E.A., Yablonsky P.K. Characteristics of autoimmune inflammation in patients with pulmonary tuberculosis. Medical Immunology (Russia), 2019, vol. 21, no. 5, pp. 911–918. doi: 10.15789/1563-0625-2019-5-911-918
  126. Szekanecz Z., Balog A., Constantin T., Czirják L., Géher P., Kovács L., Kumánovics G., Nagy G., Rákóczi É., Szamosi S., Szűcs G., Vályi-Nagy I. COVID-19: autoimmunity, multisystemic inflammation and autoimmune rheumatic patients. Expert Rev. Mol. Med., 2022, vol. 24: e13. doi: 10.1017/erm.2022.10
  127. Tan M., Liu Y., Zhou R., Deng X., Li F., Liang K., Shi Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology, 2020, vol. 160, no. 3, pp. 261–268. doi: 10.1111/imm.13223
  128. Tana C., Cinetto F., Mantini C., Bernardinello N., Tana M., Ricci F., Ticinesi A., Meschi T., Scarpa R., Cipollone F., Giamberardino M.A., Spagnolo P. Sarcoidosis and COVID-19: At the Cross-Road between Immunopathology and Clinical Manifestation. Biomedicines, 2022, vol. 10, no. 10: 2525. doi: 10.3390/biomedicines10102525
  129. Tchernev G., Ananiev J., Cardoso J.C., Wollina U., Verma S.B., Patterson J.W., Dourmishev L.A., Tronnier M., Okamoto H., Mizuno K., Kanazawa N., Gulubova M., Manolova I., Salaro C. Sarcoidosis and molecular mimicry — important etiopathogenetic aspects: current state and future directions. Wien Klin. Wochenschr., 2012, vol. 124, no. 7–8, pp. 227–238. doi: 10.1007/s00508-012-0154-9
  130. Ten Berge B., Paats M.S., Bergen I.M., van den Blink B., Hoogsteden H.C., Lambrecht B.N., Hendriks R.W., Kleinjan A. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford), 2012, vol. 51, no. 1, pp. 37–46. doi: 10.1093/rheumatology/ker316
  131. Thillai M., Eberhardt C., Lewin A.M., Potiphar L., Hingley-Wilson S., Sridhar S., Macintyre J., Kon O.M., Wickremasinghe M., Wells A., Weeks M.E., Mitchell D., Lalvani A. Sarcoidosis and tuberculosis cytokine profiles: Indistinguishable in bronchoalveolar lavage but different in blood. PLoS One, 2012, vol. 7: e38083. doi: 10.1371/journal.pone.0038083
  132. Trougakos I.P., Stamatelopoulos K., Terpos E., Tsitsilonis O.E., Aivalioti E., Paraskevis D., Kastritis E., Pavlakis G.N., Dimopoulos M.A. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J. Biomed. Sci., 2021, vol. 28, no. 1: 9. doi: 10.1186/s12929-020-00703-5
  133. Vasileva E.V., Kudryavtsev I.V., Maximov G.V., Verbov V.N., Serebriakova M.K., Tkachuk A.P., Totolian Areg A. Impact of HIV infection and tuberculosison the peripheral blood T-cell differentiation. Russian Journal of Infection and Immunity, 2017, vol. 7, no. 2, pp. 151–161. doi: 10.15789/2220-7619-2017-2-151-161
  134. Velounias R.L., Tull T.J. Human B-cell subset identification and changes in inflammatory diseases. Clin. Exp. Immunol., 2022, vol. 210, no. 3, pp. 201–216. doi: 10.1093/cei/uxac104
  135. Watad A., Rosenberg V., Tiosano S., Cohen Tervaert J.W., Yavne Y., Shoenfeld Y., Shalev V., Chodick G., Amital H. Silicone breast implants and the risk of autoimmune diseases: real world analysis. Ann. Rheum. Dis., 2018, vol. 77, pp. 1191–1192. doi: 10.1093/ije/dyy217
  136. Weiskopf D., Schmitz K.S., Raadsen M.P., Grifoni A., Okba N.M.A., Endeman H., van den Akker J.P.C., Molenkamp R., Koopmans M.P.G., van Gorp E.C.M., Haagmans B.L., de Swart R.L., Sette A., de Vries R.D. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol., 2020, vol. 5, no. 48: eabd2071. doi: 10.1126/sciimmunol.abd2071
  137. WHO global lists of high burden countries for TB, multidrug/rifampicin-resistant TB (MDR/RR-TB) and TB/HIV, 2021–2025. WHO, 2021. 16 p.
  138. WHO. Coronavirus disease (COVID-19) Pandemic. Geneva: WHO; 2020. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
  139. Winau F., Weber S., Sad S., de Diego J., Hoops S.L., Breiden B., Sandhoff K., Brinkmann V., Kaufmann S.H., Schaible U.E. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity, 2006, vol. 24, no. 1, pp. 105–117. doi: 10.1016/j.immuni.2005.12.001
  140. Winheim E., Rinke L., Lutz K., Reischer A., Leutbecher A., Wolfram L., Rausch L., Kranich J., Wratil P.R., Huber J.E., Baumjohann D., Rothenfusser S., Schubert B., Hilgendorff A., Hellmuth J.C., Scherer C., Muenchhoff M., von Bergwelt-Baildon M., Stark K., Straub T., Brocker T., Keppler O.T., Subklewe M., Krug A.B. Impaired function and delayed regeneration of dendritic cells in COVID-19. PLoS Pathog., 2021, vol. 17, no. 10: e1009742. doi: 10.1371/journal.ppat.100974
  141. Wu D., Yang X.O. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect., 2020, vol. 53, no. 3, pp. 368–370. doi: 10.1016/j.jmii.2020.03.005
  142. Wu Y.E., Zhang S.W., Peng W.G., Li K.S., Li K., Jiang J.K., Lin J.H., Cai Y.M. Changes in lymphocyte subsets in the peripheral blood of patients with active pulmonary tuberculosis. J. Int. Med. Res., 2009, vol. 37, no. 6, pp. 1742–1749. doi: 10.1177/147323000903700610
  143. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, vol. 8, pp. 420–422. doi: 10.1016/S2213-2600(20)30076-X
  144. Zaid Y., Doré É., Dubuc I., Archambault A.S., Flamand O., Laviolette M., Flamand N., Boilard É., Flamand L. Chemokines and eicosanoids fuel the hyperinflammation within the lungs of patients with severe COVID-19. J. Allergy Clin. Immunol., 2021, vol. 148, no. 2, pp. 368–380.e3. doi: 10.1016/j.jaci.2021.05.032
  145. Zewdie M., Howe R., Hoff S.T., Doherty T.M., Getachew N., Tarekegne A., Tessema B., Yamuah L., Aseffa A., Abebe M. Ex-vivo characterization of regulatory T cells in pulmonary tuberculosis patients, latently infected persons, and healthy endemic controls. Tuberculosis, 2016, vol. 100, pp. 61–68. doi: 10.1016/j.tube.2016.06.007
  146. Zhang H., Costabel U., Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front. Immunol., 2021, no. 12: 788502. doi: 10.3389/fimmu.2021.788502
  147. Zhang M., Zhang S. T Cells in Fibrosis and Fibrotic Diseases. Front. Immunol., 2020, no. 11: 1142. doi: 10.3389/fimmu.2020.01142
  148. Zhang M., Zheng X., Zhang J., Zhu Y., Zhu X., Liu H., Zeng M, Graner M.W., Zhou B., Chen X. CD19+CD1d+CD5+ B cell frequencies are increased in patients with tuberculosis and suppress Th17 responses. Cell. Immunol., 2012, vol. 274, no. 1–2, pp. 89–97. doi: 10.1016/j.cellimm.2012.01.007
  149. Zheng H.Y., Zhang M., Yang C.X., Zhang N., Wang X.C., Yang X.P., Dong X.Q., Zheng Y.T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol., 2020, vol. 17, no. 5, pp. 541–543. doi: 10.1038/s41423-020-0401-3
  150. Zhou E.R., Arce S. Key Players and Biomarkers of the Adaptive Immune System in the Pathogenesis of Sarcoidosis. Int. J. Mol. Sci., 2020, vol. 21, no. 19: 7398. doi: 10.3390/ijms21197398
  151. Zhuang Z., Lai X., Sun J., Chen Z., Zhang Z., Dai J., Liu D., Li Y., Li F., Wang Y., Zhu A., Wang J., Yang W., Huang J., Li X., Hu L., Wen L., Zhuo J., Zhang Y., Chen D., Li S., Huang S., Shi Y., Zheng K., Zhong N., Zhao J., Zhou D., Zhao J. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med., 2021, vol. 218, no. 4: e20202187. doi: 10.1084/jem.20202187

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Scheme of immune response in COVID-19, sarcoidosis and tuberculosis

Download (337KB)

Copyright (c) 2024 Starshinova A.A., Kudryavtsev I.V., Rubinstein A.A., Malkova A., Ling H., Zhuang M., Starshinova A.Y., Dovgaluk I.F., Kudlay D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies