Аутоиммунные нарушения у больных гранулематозными заболеваниями после COVID-19: функционирование субпопуляций Т- и В-клеток
- Авторы: Старшинова А.А.1,2, Кудрявцев И.В.3, Рубинштейн А.А.3, Малкова А.4, Лин Х.5, Чжуан М.5, Старшинова А.Ю.6, Довгалюк И.Ф.7, Кудлай Д.А.8,9
-
Учреждения:
- ФГБОУ ВО Санкт-Петербургский государственный университет
- ФГБУ Национальный медицинский исследовательский центр имени Алмазова
- ФГБНУ Институт экспериментальной медицины
- Университет Ариэль
- Харбинский медицинский университет
- ФГБОУ ВО Санкт-Петербургский государственный педиатрический медицинский университет
- ФГБУ Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии Министерства здравоохранения Российской Федерации
- ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)
- ФГБУ ГНЦ Институт иммунологии ФМБА России
- Выпуск: Том 14, № 2 (2024)
- Страницы: 251-266
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/2220-7619/article/view/262366
- DOI: https://doi.org/10.15789/2220-7619-EOU-16874
- ID: 262366
Цитировать
Полный текст
Аннотация
Саркоидоз и туберкулез являются гранулематозными патологиями, имеющими большое количество схожих черт, из-за которых возникают трудности в дифференциальной диагностике этих заболеваний, что в дальнейшем приводит к неправильному выбору тактики лечения пациентов. Аутоиммунное воспаление (АВ) является одним из процессов, выявленных как при туберкулезе, так и при саркоидозе. Текущие данные о риске и клинических исходах инфекции COVID-19 у пациентов с саркоидозом либо с сочетанной инфекцией M. tuberculosis все еще недостаточно изучены. SARS-CoV-2 оказывает как прямое патологическое действие на эпителиальные клетки дыхательной системы, так и опосредованное за счет нарушений кровообращения. Материалы и методы. В этом исследовании мы изучили особенности аутоиммунного ответа у пациентов с гранулематозными заболеваниями (туберкулезом и саркоидозом) после COVID-19. Мы проанализировали статьи с декабря 2019 по март 2023 г., опубликованные в международных базах данных («Medline», «PubMed», «Scopus»). Ключевые слова, которые мы использовали: «COVID-19», «SARS-CoV-2», «туберкулез», «саркоидоз», «гранулематозные заболевания», «Т-клетки», «В-клетки», «Treg», «фолликулярный Treg» и «Подмножества Treg». Описательный обзор проводился в соответствии с протоколом PRISMA (http://www.prisma-statement.org), используемым для этого типа исследования (ID-423604). Результаты. COVID-19 вносит существенный вклад в нарушение Т- и В-клеточного иммунного ответа. Коронавирусная инфекция может изменить и характер клеточного метаболизма, что отразится на течении гранулематозного воспаления. По данным различных исследований, аутоиммунный компонент может быть важным защитным механизмом при саркоидозе и, в то же время, он способен усугублять течение туберкулезной инфекции, приводить к прогрессированию заболевания с формированием в дальнейшем лекарственной устойчивости возбудителя. Изучение особенностей иммунного ответа у пациентов с COVID-19 и пациентов с интерстициальными заболеваниями легких показало наличие ряда схожих характеристик у клеточных компонентов иммунного ответа. Заключение. Доказательства наличия аутоиммунного воспаления у пациентов с данными гранулематозными заболеваниями легких, определение иммунотипов пациентов, в том числе перенесших COVID-19, будут вносить существенный вклад в разработку персонализированной тактики ведения пациентов с учетом выявленных нарушений механизмов иммунного ответа.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
А. А. Старшинова
ФГБОУ ВО Санкт-Петербургский государственный университет; ФГБУ Национальный медицинский исследовательский центр имени Алмазова
Email: arrubin6@mail.ru
д.м.н., главный научный сотрудник лаборатории вероятностных методов анализа математического факультета; начальник Управления научными исследованиями
Россия, Санкт-Петербург; Санкт-ПетербургИ. В. Кудрявцев
ФГБНУ Институт экспериментальной медицины
Email: arrubin6@mail.ru
к.б.н., зав. лабораторией клеточной иммунологии отдела иммунологии
Россия, Санкт-ПетербургА. А. Рубинштейн
ФГБНУ Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: arrubin6@mail.ru
младший научный сотрудник лаборатории клеточной иммунологии отдела иммунологии
Россия, Санкт-ПетербургА. Малкова
Университет Ариэль
Email: arrubin6@mail.ru
аспирант кафедры молекулярной биологии факультета естественных наук
Израиль, АриэльХ. Лин
Харбинский медицинский университет
Email: arrubin6@mail.ru
д.м.н., кафедра микробиологии, иммунологии; ключевая лаборатория инфекций и иммунитета провинции Хэйлунцзян; ключевая лаборатория биологии патогенов
Китай, г. ХарбинМ. Чжуан
Харбинский медицинский университет
Email: arrubin6@mail.ru
д.м.н., кафедра микробиологии, иммунологии; ключевая лаборатория инфекций и иммунитета провинции Хэйлунцзян; ключевая лаборатория биологии патогенов
Китай, г. ХарбинА. Ю. Старшинова
ФГБОУ ВО Санкт-Петербургский государственный педиатрический медицинский университет
Email: arrubin6@mail.ru
студент медицинского факультета
Россия, Санкт-ПетербургИ. Ф. Довгалюк
ФГБУ Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии Министерства здравоохранения Российской Федерации
Email: arrubin6@mail.ru
д.м.н., профессор, ведущий научный сотрудник, зав. отделением детского туберкулеза
Россия, Санкт-ПетербургД. А. Кудлай
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет); ФГБУ ГНЦ Институт иммунологии ФМБА России
Email: arrubin6@mail.ru
д.м.н., профессор кафедры фармакологии Института фармации; ведущий научный сотрудник лаборатории персонализированной медицины и молекулярной иммунологии
Россия, Москва; МоскваСписок литературы
- Abebe F. Immunological basis of early clearance of Mycobacterium tuberculosis infection: the role of natural killer cells. Clin. Exp. Immunol., 2021, vol. 204, no. 1, pp. 32–40. doi: 10.1111/cei.13565
- Abreu M.T., Carvalheiro H., Rodrigues-Sousa T., Domingos A., Segorbe-Luis A., Rodrigues-Santos P., Souto-Carneiro M.M. Alterations in the peripheral blood B cell subpopulations of multidrug-resistant tuberculosis patients. Clin. Exp. Med., 2014, vol. 14, pp. 423–429. doi: 10.1007/s10238-013-0258-1
- Adamo S., Michler J., Zurbuchen Y., Cervia C., Taeschler P., Raeber M.E., Baghai Sain S., Nilsson J., Moor A.E., Boyman O. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature, 2022, vol. 602, no. 7895, pp. 148–155. doi: 10.1038/s41586-021-04280-x
- Ahmed A., Adiga V., Nayak S., Uday Kumar J.A.J., Dhar C., Sahoo P.N., Sundararaj B.K., Souza G.D., Vyakarnam A. Circulating HLA-DR+CD4+ effector memory T cells resistant to CCR5 and PD-L1 mediated suppression compromise regulatory T cell function in tuberculosis. PLoS Pathog. 2018, vol. 14, no. 9: e1007289. doi: 10.1371/journal.ppat.1007289
- Akiyama M., Yasuoka H., Yamaoka K., Suzuki K., Kaneko Y., Kondo H., Kassai Y., Koga K., Miyazaki T., Morita R., Yoshimura A., Takeuchi T. Enhanced IgG4 production by follicular helper 2 T cells and the involvement of follicular helper 1 T cells in the pathogenesis of IgG4-related disease. Arthritis. Res. Ther., 2016, no. 18: 167. doi: 10.1186/s13075-016-1064-4
- Аkthivel P., Bruder D., Mechanism of granuloma formation in sarcoidosis. Curr. Opin. Hematol., 2017, vol. 24, pp. 59–65. doi: 10.1097/MOH.0000000000000301
- Al Balushi A., AlShekaili J., Al Kindi M., Ansari Z., Al-Khabori M., Khamis F., Ambusaidi Z., Al Balushi A., Al Huraizi A., Al Sulaimi S., Al Fahdi F., Al Balushi I., Pandak N., Fletcher T., Nasr I. Immunological predictors of disease severity in patients with COVID-19. Int. J. Infect. Dis., 2021, vol. 110, pp. 83–92. doi: 10.1016/j.ijid.2021.06.056
- Alosaimi B., Mubarak A., Hamed M.E., Almutairi A.Z., Alrashed A.A., AlJuryyan A., Enani M., Alenzi F.Q., Alturaiki W. Complement Anaphylatoxins and Inflammatory Cytokines as Prognostic Markers for COVID-19 Severity and In-Hospital Mortality. Front. Immunol., 2021, no. 12: 668725. doi: 10.3389/fimmu.2021.668725
- Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol., 2015, vol. 135, no. 3, pp. 626–35. doi: 10.1016/j.jaci.2014.11.001
- Bagavant H., Cizio K., Araszkiewicz A.M., Papinska J.A., Garman L., Li C., Pezant N., Drake W.P., Montgomery C.G., Deshmukh U.S. Systemic immune response to vimentin and granuloma formation in a model of pulmonary sarcoidosis. J. Transl. Autoimmun., 2022, no. 5: 100153. doi: 10.1016/j.jtauto.2022.100153
- Belyaeva I.V., Kosova A.N., Vasiliev A.G. Tuberculosis and Autoimmunity. Pathophysiology, 2022, vol. 29, no. 3, pp. 469–470. doi: 10.3390/pathophysiology29020022
- Billiau A., Matthys P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol., 2001, vol. 70, no. 6, pp. 849–860
- Billottet C., Quemener C., Bikfalvi A. CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim. Biophys. Acta, 2013, vol. 1836, no. 2, pp. 287–295. doi: 10.1016/j.bbcan.2013.08.002
- Blank M., Barzilai O., Shoenfeld Y. Molecular mimicry and auto-immunity. Clin. Rev. Allergy Immunol., 2007, vol. 32, no. 1, pp. 111–118. doi: 10.1007/BF02686087
- Boechat J.L., Chora I., Morais A., Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology — current perspectives. Pulmonology, 2021, vol. 27, no. 5, pp. 423–437. doi: 10.1016/j.pulmoe.2021.03.008
- Borham M., Oreiby A., El-Gedawy A., Hegazy Y., Khalifa H.O., Al-Gaabary M., Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens, 2022, vol. 11, no. 7: 715. doi: 10.3390/pathogens11070715
- Broos C.E., van Nimwegen M., Hoogsteden H.C., Hendriks R.W., Kool M., van den Blink B. Granuloma formation in pulmonary sarcoidosis. Front. Immunol., 2013, no. 4: 437. doi: 10.3389/fimmu.2013.00437
- Broos C.E., van Nimwegen M., Kleinjan A., et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res. 2015, vol. 16, no. 1: 108. doi: 10.1186/s12931-015-0265-8
- Busuttil A., Weigt S.S., Keane M.P., Xue Y.Y., Palchevskiy V., Burdick M.D., Huang C., Zisman D.A., Fishbein M., Lynch J.P.3rd, Strieter R.M., Elashoff R.M., Belperio J.A. CXCR3 ligands are augmented during the pathogenesis of pulmonary sarcoidosis. Eur. Respir. J., 2009, vol. 34, no. 3, pp. 676–686. doi: 10.1183/09031936.00157508
- Cain H., Kraus B. Immunofluorescence microscopic demonstration of vimentin filaments in asteroid bodies of sarcoidosis. A comparison with electron microscopic findings. Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol., 1983, vol. 42, no. 2, pp. 213–226. doi: 10.1007/bf02890384
- Cardona P., Cardona P.-J. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front. Immunol., 2019, vol. 10: 2139. doi: 10.3389/fimmu.2019.02139
- Caso F., Costa L., Ruscitti P., Navarini L., Del Puente A., Giacomelli R., Scarpa R. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun. Rev., 2020, vol. 19, no. 5: 102524. doi: 10.1016/j.autrev.2020.102524
- Chen X., Huang J., Huang Y., Chen J., Huang Y., Jiang X., Shi Y. Characteristics of immune cells and cytokines in patients with coronavirus disease 2019 in Guangzhou, China. Hum. Immunol., 2020, vol. 81, no. 12, pp. 702–708. doi: 10.1016/j.humimm.2020.08.006
- Chen X., Zhang M., Liao M., Graner M.W., Wu C., Yang Q., Liu H., Zhou B Reduced Th17 response in patients with tuberculosis correlates with IL-6R expression on CD4+ T Cells. Am. J. Respir. Crit. Care Med., 2010, vol. 181, no. 7, pp. 734–742. doi: 10.1164/rccm.200909-1463OC
- Chen Y.C., Chin C.H., Liu S.F., Wu C.C., Tsen C.C., Wang Y.H., Chao T.Y., Lie C.H., Chen C.J., Wang C.C., Lin M.C. Prognostic values of serum IP-10 and IL-17 in patients with pulmonary tuberculosis. Dis. Markers, 2011, vol. 31, no. 2, pp. 101–110. doi: 10.3233/DMA-2011-0808
- Cheng M.P., Butler-Laporte G., Parkes L.O., Bold T.D., Fritzler M.J., Behr M.A. Prevalence of Auto-antibodies in Pulmonary Tuberculosis. Open Forum Infect. Dis., 2019, vol. 6, no. 4: ofz114. doi: 10.1093/ofid/ofz114
- Chiacchio T., Casetti R., Butera O., Vanini V., Carrara S., Girardi E., Di Mitri D., Battistini L., Martini F., Borsellino G., Goletti D. Characterization of regulatory T cells identified as CD4(+)CD25(high)CD39(+) in patients with active tuberculosis. Clin. Exp. Immunol., 2009, vol. 156, no. 3, pp. 463–70. doi: 10.1111/j.1365-2249.2009.03908.x
- Cinetto F., Scarpa R., Dell’Edera A., Jones M.G., Immunology of sarcoidosis: old companions, new relationships. Curr. Opin. Pulm. Med., 2020, vol. 26, pp. 535–543. doi: 10.1097/MCP.0000000000000711
- D’Alessandro M., Bergantini L., Cameli P., Mezzasalma F., Refini R.M., Pieroni M., Sestini P., Bargagli E. Adaptive immune system in pulmonary sarcoidosis — comparison of peripheral and alveolar biomarkers. Clin. Exp. Immunol., 2021, vol. 205, no. 3, pp. 406–416. doi: 10.1111/cei.13635
- D’Alessandro M., Bergantini L., Gangi S., Cameli P., Armati M., Fanetti M., Mezzasalma F., Baglioni S., Sarc-Si Study Group, Bargagli E. Imbalance of Lymphocyte Subsets and CD45RA-Expressing Cells in Intrathoracic Lymph Nodes, Alveolar Compartment and Bloodstream of Pulmonary Sarcoidosis Patients. Int. J. Mol. Sci., 2023, vol. 24, no. 12: 10344. doi: 10.3390/ijms241210344
- De Biasi S., Lo Tartaro D., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidanza L., Mattioli M., Paolini A., Gozzi L., Jaacoub D., Faltoni M., Volpi S., Milić J., Sita M., Sarti M., Pucillo C., Girardis M., Guaraldi G., Mussini C., Cossarizza A. Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVID-19 patients with pneumonia. Eur. J. Immunol., 2020, vol. 50, no. 9, pp. 1283–1294. doi: 10.1002/eji.202048838
- Ding J., Dai J., Cai H., Gao Q., Wen Y. Extensively disturbance of regulatory T cells — Th17 cells balance in stage II pulmonary sarcoidosis. Int. J. Med. Sci., 2017, vol. 14, no. 11, pp. 1136–1142. doi: 10.7150/ijms.18838
- Dubaniewicz A. Mycobacterium tuberculosis heat shock proteins and autoimmunity in sarcoidosis. Autoimmun. Rev., 2010, vol. 9, no. 6, pp. 419–424. doi: 10.1016/j.autrev.2009.11.015
- Elkington P., Tebruegge M., Mansour S. Tuberculosis: an Infection-Initiated Autoimmune Disease? Trends Immunol., 2016, vol. 37, no. 12, pp. 815–818. doi: 10.1016/j.it.2016.09.007
- Erre G.L., Cossu D., Masala S., Mameli G., Cadoni M.L., Serdino S., Longu M.G., Passiu G., Sechi L.A. Mycobacterium tuberculosis lipoarabinomannan antibodies are associated to rheumatoid arthritis in Sardinian patients. Clin. Rheumatol., 2014, vol. 33, no. 12, pp. 1725–1729. doi: 10.1007/s10067-014-2678-z
- Fathi F., Sami R., Mozafarpoor S., Hafezi H., Motedayyen H., Arefnezhad R., Eskandari N. Immune system changes during COVID-19 recovery play key role in determining disease severity. Int. J. Immunopathol. Pharmacol., 2020, no. 34: 2058738420966497. doi: 10.1177/2058738420966497
- Ferrantelli F., Chiozzini C., Manfredi F., Leone P., Spada M., Di Virgilio A., Giovannelli A., Sanchez M., Cara A., Michelini Z., Federico M. Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses, 2022, vol. 14, no. 2: 329. doi: 10.3390/v14020329
- Fischer A., Ellinghaus D., Nutsua M., Hofmann S., Montgomery C.G., Iannuzzi M.C., Rybicki B.A., Petrek M., Mrazek F., Pabst S., Grohé C., Grunewald J., Ronninger M., Eklund A., Padyukov L., Mihailovic-Vucinic V., Jovanovic D., Sterclova M., Homolka J., Nöthen M.M., Herms S., Gieger C., Strauch K., Winkelmann J., Boehm B.O., Brand S., Büning C., Schürmann M., Ellinghaus E., Baurecht H., Lieb W., Nebel A., Müller-Quernheim J., Franke A., Schreiber S.; GenPhenReSa Consortium. Identification of Immune-Relevant Factors Conferring Sarcoidosis Genetic Risk. Am. J. Respir. Crit. Care Med., 2015, vol. 192, no. 6, pp. 727–736. doi: 10.1164/rccm.201503-0418OC
- Fischer A., Rybicki B.A. Granuloma genes in sarcoidosis: what is new? Curr. Opin. Pulm. Med., 2015, vol. 21, no. 5, pp. 510–516. doi: 10.1097/MCP.0000000000000189
- Gong F., Dai Y., Zheng T., Cheng L., Zhao D., Wang H., Liu M., Pei H., Jin T., Yu D., Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6588–6599. doi: 10.1172/JCI141054
- Groom J.R., Luster A.D. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell. Biol., 2011, vol. 89, no. 2, pp. 207–215. doi: 10.1038/icb.2010.158
- Gutiérrez-Bautista J.F., Rodriguez-Nicolas A., Rosales-Castillo A., Jiménez P., Garrido F., Anderson P., Ruiz-Cabello F., López-Ruz M.Á. Negative Clinical Evolution in COVID-19 Patients Is Frequently Accompanied With an Increased Proportion of Undifferentiated Th Cells and a Strong Underrepresentation of the Th1 Subset. Front. Immunol., 2020, no. 11: 596553. doi: 10.3389/fimmu.2020.596553
- Guyot-Revol V., Innes J.A., Hackforth S., Hinks T., Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am. J. Respir. Crit. Care Med., 2006, vol. 173, pp. 803–810. doi: 10.1164/rccm.200508-1294OC
- Habel J.R., Nguyen T.H.O., van de Sandt C.E., Juno J.A., Chaurasia P., Wragg K., Koutsakos M., Hensen L., Jia X., Chua B., Zhang W., Tan H.X., Flanagan K.L., Doolan D.L., Torresi J., Chen W., Wakim L.M., Cheng A.C., Doherty P.C., Petersen J., Rossjohn J., Wheatley A.K., Kent S.J., Rowntree L.C., Kedzierska K. Suboptimal SARS-CoV-2-specific CD8+ T cell response associated with the prominent HLA-A*02:01 phenotype. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 39, pp. 24384–24391. doi: 10.1073/pnas.2015486117
- Halim L., Romano M., McGregor R., Correa I., Pavlidis P., Grageda N., Hoong S.J., Yuksel M., Jassem W., Hannen R.F., Ong M., Mckinney O., Hayee B., Karagiannis S.N., Powell N., Lechler R.I., Nova-Lamperti E., Lombardi G. An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment. Cell. Rep., 2017, vol. 20, no. 3, pp. 757–770. doi: 10.1016/j.celrep.2017.06.079
- Hingley-Wilson S.M., Connell D., Pollock K., Hsu T., Tchilian E., Sykes A., Grass L., Potiphar L., Bremang S., Kon O.M., Jacobs W.R. Jr., Lalvani A. ESX1-dependent fractalkine mediates chemotaxis and Mycobacterium tuberculosis infection in humans. Tuberculosis (Edinb.), 2014, vol. 94, no. 3, pp. 262–270. doi: 10.1016/j.tube.2014.01.004
- Hu B., Huang S., Yin L. The cytokine storm and COVID-19. J. Med. Virol., 2021, vol. 93, no. 1, pp. 250–256. doi: 10.1002/jmv.26232
- Huang H., Lu Z., Jiang C., Liu J., Wang Y., Xu Z. Imbalance between Th17 and regulatory T-Cells in sarcoidosis. Int. J. Mol. Sci., 2013, vol. 14, no. 11, pp. 21463–21473. doi: 10.3390/ijms141121463
- Joosten S.A., van Meijgaarden K.E., Del Nonno F., Baiocchini A., Petrone L., Vanini V., Smits H.H., Palmieri F., Goletti D., Ottenhoff T.H. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathog., 2016, vol. 12, no. 6: e1005687. doi: 10.1371/journal.ppat.1005687
- Kakumanu P., Yamagata H., Sobel E.S., Reeves W.H., Chan E.K., Satoh M. Patients with pulmonary tuberculosis are frequently positive for anti-cyclic citrullinated peptide antibodies, but their sera also react with unmodified arginine-containing peptide. Arthritis Rheum., 2008, vol. 58, no. 6, pp. 1576–1581. doi: 10.1002/art.23514
- Kalfaoglu B., Almeida-Santos J., Tye C.A., Satou Y., Ono M. T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Front. Immunol., 2020, no. 11: 589380. doi: 10.3389/fimmu.2020.589380
- Kalinina O., Golovkin A., Zaikova E., Aquino A., Bezrukikh V., Melnik O., Vasilieva E., Karonova T., Kudryavtsev I., Shlyakhto E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int. J. Mol. Sci., 2022, vol. 23, no. 16: 8879. doi: 10.3390/ijms23168879
- Kanduc D., Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin. Immunol., 2020, no. 215: 108426. doi: 10.1016/j.clim.2020.108426
- Kaneko N., Kuo H.H., Boucau J., Farmer J.R., Allard-Chamard H., Mahajan V.S., Piechocka-Trocha A., Lefteri K., Osborn M., Bals J., Bartsch Y.C., Bonheur N., Caradonna T.M., Chevalier J., Chowdhury F., Diefenbach T.J., Einkauf K., Fallon J., Feldman J., Finn K.K., Garcia-Broncano P., Hartana C.A., Hauser B.M., Jiang C., Kaplonek P., Karpell M., Koscher E.C., Lian X., Liu H., Liu J., Ly N.L., Michell A.R., Rassadkina Y., Seiger K., Sessa L., Shin S., Singh N., Sun W., Sun X., Ticheli H.J., Waring M.T., Zhu A.L., Alter G., Li J.Z., Lingwood D., Schmidt A.G., Lichterfeld M., Walker B.D., Yu X.G., Padera R.F. Jr., Pillai S.; Massachusetts Consortium on Pathogen Readiness Specimen Working Group. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell, 2020, vol. 183, no. 1, pp. 143–157.e13. doi: 10.1016/j.cell.2020.08.025
- Kim S.H., Kim J., Jang J.Y., Noh H., Park J., Jeong H., Jeon D., Uhm C., Oh H., Cho K., Jeon Y., On D, Yoon S., Lim S.Y., Kim S.P., Lee Y.W., Jang H.J., Park I.H., Oh J., Seo J.S., Kim J.J., Seok S.H., Lee Y.J., Hong S.M., An S.H., Kim S.Y., Kim Y.B., Hwang J.Y., Lee H.J., Kim H.B., Choi K.S., Park J.W., Seo J.Y., Yun J.W., Shin J.S., Lee H.Y., Kim K., Lee D., Lee H., Nam K.T., Seong J.K. Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits. Front. Immunol., 2022, no. 13: 1055811. doi: 10.3389/fimmu.2022.1055811
- Kita S., Tsuda T., Sugisaki K., Miyazaki E., Matsumoto T. Characterization of distribution of T lymphocyte subsets and activated T lymphocytes infiltrating into sarcoid lesions. Intern. Med., 1995, vol. 34, no. 9, pp. 847–855. doi: 10.2169/internalmedicine.34.847
- Korobova Z.R., Arsentieva N.A., Liubimova N.E., Batsunov O.K., Dedkov V.G., Gladkikh A.S., Sharova A.A., Adish Z., Chernykh E.I., Kaschenko V.A., Ratnikov V.A., Gorelov V.P., Stanevich O.V., Kulikov A.N., Pevtsov D.E., Totolian A.A. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int. J. Mol. Sci., 2022, vol. 23, no. 22: 14146. doi: 10.3390/ijms232214146
- Koutsakos M., Rowntree L.C., Hensen L., Chua B.Y., van de Sandt C.E., Habel J.R., Zhang W., Jia X., Kedzierski L., Ashhurst T.M., Putri G.H., Marsh-Wakefield F., Read M.N., Edwards D.N., Clemens E.B., Wong C.Y., Mordant F.L., Juno J.A., Amanat F., Audsley J., Holmes N.E., Gordon C.L., Smibert O.C., Trubiano J.A., Hughes C.M., Catton M., Denholm J.T., Tong S.Y.C., Doolan D.L., Kotsimbos T.C., Jackson D.C., Krammer F., Godfrey D.I., Chung A.W., King N.J.C., Lewin S.R., Wheatley A.K., Kent S.J., Subbarao K., McMahon J., Thevarajan I., Nguyen T.H.O., Cheng A.C., Kedzierska K. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell. Rep. Med., 2021, vol. 2, no. 3: 100208. doi: 10.1016/j.xcrm.2021.100208
- Kozlov V.A., Savchenko A.A., Kudryavtsev I.V., Kozlov I.G., Kudlay D.A., Prodeus A.P., Borisov, A.G. Clinical Immunology. Krasnoyarsk: Polycor, Russia, 2020. 386 p. (In Russ.)
- Kozlov V.A., Tikhonova E.P., Savchenko A.A., Kudryavtsev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitovetsky D. .E., Kalinina Yu.S., Kasparov E.V., Kozlov I.G., Korsunsky I.A., Kudlay D.A., Kuzmina T.Yu., Minoranskaya N.S., Prodeus A.P. ., Starikova E.A., Cherdantsev D.V., Chesnokov A.B., Gear P.A., Borisov A.G. Clinical immunology. A practical guide for infectious disease specialists. Krasnoyarsk: Polikor, 2021. 563 p. (In Russ.). doi: 10.17513/np.438
- Kratzer B., Trapin D., Ettel P., Körmöczi U., Rottal A., Tuppy F., Feichter M., Gattinger P., Borochova K., Dorofeeva Y., Tulaeva I., Weber M., Grabmeier-Pfistershammer K., Tauber P.A., Gerdov M., Mühl B., Perkmann T., Fae I., Wenda S., Führer H., Henning R., Valenta R., Pickl W.F. Immunological imprint of COVID-19 on human peripheral blood leukocyte populations. Allergy, 2021, vol. 76, no. 3, pp. 751–765. doi: 10.1111/all.14647
- Kudryavtsev I., Rubinstein A., Golovkin A., Kalinina O., Vasilyev K., Rudenko L., Isakova-Sivak I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses, 2022, vol. 14, no. 5: 1082. doi: 10.3390/v14051082
- Kudryavtsev I., Serebriakova M., Starshinova A., Zinchenko Y., Basantsova N., Malkova A., Soprun L., Churilov L.P., Toubi E., Yablonskiy P., Shoenfeld Y. Imbalance in B cell and T Follicular Helper Cell Subsets in Pulmonary Sarcoidosis. Sci. Rep., 2020, vol. 10, no. 1: 1059. doi: 10.1038/s41598-020-57741-0
- Kudryavtsev I., Zinchenko Y., Starshinova A., Serebriakova M., Malkova A., Akisheva T., Kudlay D., Glushkova A., Yablonskiy P., Shoenfeld Y. Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis. Diagnostics (Basel)., 2023, vol. 13, no. 8: 1378. doi: 10.3390/diagnostics13081378
- Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtcov D.E., Totolian A.A. Alterations in B Cell and Follicular T-Helper Cell Subsets in Patients with Acute COVID-19 and COVID-19 Convalescents. Curr. Issues Mol. Biol., 2021, vol. 44, no. 1, pp. 194–205. doi: 10.3390/cimb44010014
- Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients. Viruses, 2022, vol. 14, no. 9: 1906. doi: 10.3390/v14091906
- Kudryavtsev I.V., Lazareva N.M., Baranova O.P., Golovkin A.S., Isakov D.V., Serebriakova M.K., Ses T.P., Ilkovich M.M., Totolian Areg A. CD39+ expression by regulatory T cells in pulmonary sarcoidosis and Lofgren’s syndrome. Medical Immunol. (Russia), 2019, vol. 21, no. 3, pp. 467–478. doi: 10.15789/1563-0625-2019-3-467-478
- Kudryavtsev I.V., Lazareva N.M., Baranova O.P., Serebriakova M.K., Ses’ T.P., Ilkovich M.M., Totolian A.A. Peripheral blood T helper cell subsets in Löfgren’s and non-Löfgren’s syndrome patients. Medical Immunology (Russia), 2022, vol. 24, no. 3, pp. 573–586. (In Russ.). doi: 10.15789/1563-0625-PBT-2468
- Kudryavtsev I.V., Serebriakova M.K., Starshinova A.A., Zinchenko Yu.S., Basantsova N.Yu., Belyaeva E.N., Pavlova M.V., Yablonskiy P.K. Altered peripheral blood Th17 and follicular T-helper subsets in patients with pulmonary tuberculosis. Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 304–314. doi: 10.15789/2220-7619-2019-2-304-314
- Kumar P., Saini S., Khan S., Surendra Lele S., Prabhakar B.S. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell. Immunol., 2019, vol. 339, pp. 41–49. doi: 10.1016/j.cellimm.2018.09.008
- Laing A.G., Lorenc A., Del Molino Del Barrio I., Das A., Fish M., Monin L., Muñoz-Ruiz M., McKenzie D.R., Hayday T.S., Francos-Quijorna I., Kamdar S., Joseph M., Davies D., Davis R., Jennings A., Zlatareva I., Vantourout P., Wu Y., Sofra V., Cano F., Greco M., Theodoridis E., Freedman J.D., Gee S., Chan J.N.E., Ryan S., Bugallo-Blanco E., Peterson P., Kisand K., Haljasmägi L., Chadli L., Moingeon P., Martinez L., Merrick B., Bisnauthsing K., Brooks K., Ibrahim M.A.A., Mason J., Lopez Gomez F., Babalola K., Abdul-Jawad S., Cason J., Mant C., Seow J., Graham C., Doores K.J., Di Rosa F., Edgeworth J., Shankar-Hari M., Hayday A.C. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med., 2020, vol. 26, no. 10, pp. 1623–1635. doi: 10.1038/s41591-020-1038-6
- Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. CXCR3 chemokine receptor ligands in sarcoidosis. Medical Immunology (Russia), 2021, vol. 23, no. 1, pp. 73–86. (In Russ.). doi: 10.15789/1563-0625-CCR-2181
- Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Isakov D.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. chemokines CCL17 and CCL22 in sarcoidosis. Medical Immunology (Russia), 2021, vol. 23, no. 4, pp. 791–798. (In Russ.). doi: 10.15789/1563-0625-CCA-2340
- Lazareva N., Kudryavtsev I., Baranova O., Serebriakova M., Ses’ T., Ilkovich M., Totolyan A. Peripheral blood cytotoxic T cells in patients with sarcoidosis. Russian Journal of Immunology, 2018, vol. 12, no. 3, pp. 348–353. doi: 10.31857/S102872210002408-3
- Li Y., Wei C., Xu H., Jia J., Wei Z., Guo R., Jia Y., Wu Y., Li Y., Qi X., Li Z., Gao X. The Immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators Inflamm., 2018, no. 2018: 6587296. doi: 10.1155/2018/6587296
- Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect., 2020, vol. 9, pp. 727–732. doi: 10.1080/22221751.2020.1746199
- Linke M., Pham H.T., Katholnig K., Schnöller T., Miller A., Demel F., Schütz B., Rosner M., Kovacic B., Sukhbaatar N., Niederreiter B., Blüml S., Kuess P., Sexl V., Müller M., Mikula M., Weckwerth W., Haschemi A., Susani M., Hengstschläger M., Gambello M.J., Weichhart T. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat. Immunol., 2017, vol. 18, no. 3, pp. 293–302. doi: 10.1038/ni.3655
- Lo C.Y., Huang Y.C., Huang H.Y., Chung F.T., Lin C.W., Chung K.F., Wang C.H. Increased Th1 Cells with Disease Resolution of Active Pulmonary Tuberculosis in Non-Atopic Patients. Biomedicines, 2021, vol. 9, no. 7: 724. doi: 10.3390/biomedicines9070724
- Ly N.T.M., Ueda-Hayakawa I., Nguyen C.T.H., Okamoto H. Exploring the imbalance of circulating follicular helper CD4+ T cells in sarcoidosis patients. J. Dermatol. Sci., 2020, vol. 97, no. 3, pp. 216–224. doi: 10.1016/j.jdermsci.2020.02.002
- Lyadova I.V., Panteleev A.V. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm, 2015, no. 2015: 854507. doi: 10.1155/2015/854507
- Machado Ribeiro F., Goldenberg T. Mycobacteria and autoimmunity. Lupus, 2015, vol. 24, no. 4–5, pp. 374–381. doi: 10.1177/0961203314559634
- Malkova A., Kudlay D., Kudryavtsev I., Starshinova A., Yablonskiy P., Shoenfeld Y. Immunogenetic Predictors of Severe COVID-19. Vaccines (Basel.), 2021, vol. 9, no. 3: 211. doi: 10.3390/vaccines9030211
- Mani R., Gupta M., Malik A., Tandon R., Prasad R., Bhatnagar R., Banerjee N. Adjuvant Potential of Poly-α-l-Glutamine from the Cell Wall of Mycobacterium tuberculosis. Infect. Immun., 2018, vol. 86, no. 10: pii: e00537-18. doi: 10.1128/IAI.00537-18
- Martonik D., Parfieniuk-Kowerda A., Rogalska M., Flisiak R. The Role of Th17 Response in COVID-19. Cells, 2021, vol. 10, no. 6: 1550. doi: 10.3390/cells10061550
- Mathew D., Giles J.R., Baxter A.E., Greenplate A.R., Wu J.E., Alanio C., Oldridge D.A., Kuri-Cervantes L., Pampena M.B., D’Andrea K., Manne S., Chen Z., Huang Y.J., Reilly J.P., Weisman A.R., Ittner C.A.G., Kuthuru O., Dougherty J., Nzingha K., Han N., Kim J., Pattekar A., Goodwin E.C., Anderson E.M., Weirick M.E., Gouma S., Arevalo C.P., Bolton M.J., Chen F., Lacey S.F., Hensley S.E., Apostolidis S., Huang A.C., Vella L.A.; UPenn COVID Processing Unit; Betts M.R., Meyer N.J., Wherry E.J. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv, 2020: 2020.05.20.106401 [Preprint]. doi: 10.1101/2020.05.20.106401
- Mertz P., Jeannel J., Guffroy A., Lescuyer S., Korganow A.S., Rondeau-Lutz M., Weber J.C. Granulomatous manifestations associated with COVID19 infection: Is there a link between these two diseases? Autoimmun Rev., 2021, vol. 20, no. 6: 102824. doi: 10.1016/j.autrev.2021.102824
- Miyara M., Amoura Z., Parizot C., Badoual C., Dorgham K., Trad S., Kambouchner M., Valeyre D., Chapelon-Abric C., Debré P., Piette J.C., Gorochov G. The immune paradox of sarcoidosis and regulatory T cells. J. Exp. Med., 2006, vol. 203, no. 2, pp. 359–370. doi: 10.1084/jem.20050648
- Mohebbi S.R., Baghaei K., Rostami-Nejad M., Nazemalhosseini Mojarad E., Mirjalali H., Yadegar A., Asri N., Abdoulahi S., Assadzadeh Aghdaei H. Significant changes of CD4, FOXP3, CD25, and IL6 expression level in Iranian COVID-19 patients. Gastroenterol. Hepatol. Bed. Bench., 2020, vol. 13, no. 4, pp. 388–392.
- Musaelyan A., Lapin S., Nazarov V., Tkachenko O., Gilburd B., Mazing A., Mikhailova L., Shoenfeld Y. Vimentin as antigenic target in autoimmunity: a comprehensive review. J. Autoimmun. Rev., 2018, vol. 17, no. 9, pp. 926–934. doi: 10.1016/j.autrev.2018.04.004
- Nureki S., Miyazaki E., Ando M., Ueno T., Fukami T., Kumamoto T., Sugisaki K., Tsuda T. Circulating levels of both Th1 and Th2 chemokines are elevated in patients with sarcoidosis. Respir. Med., 2008, vol. 102, no. 2, pp. 239–247. doi: 10.1016/j.rmed.2007.09.006
- Odak I., Barros-Martins J., Bošnjak B., Stahl K., David S., Wiesner O., Busch M., Hoeper M.M., Pink I., Welte T., Cornberg M., Stoll M., Goudeva L., Blasczyk R., Ganser A., Prinz I., Förster R., Koenecke C., Schultze-Florey C.R. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine, 2020, no. 57: 102885. doi: 10.1016/j.ebiom.2020.102885
- Ogongo P., Tezera L.B., Ardain A., Nhamoyebonde S., Ramsuran D., Singh A., Ng’oepe A, Karim F., Naidoo T., Khan K., Dullabh K.J., Fehlings M., Lee B.H., Nardin A., Lindestam Arlehamn C.S., Sette A., Behar S.M., Steyn A.J., Madansein R., Kløverpris H.N., Elkington P.T., Leslie A. Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. J. Clin. Invest., 2021, vol. 131, no. 10: e142014. doi: 10.1172/JCI142014
- Okamoto Yoshida Y., Umemura M., Yahagi A., O’Brien R.L., Ikuta K., Kishihara K., Hara H., Nakae S., Iwakura Y., Matsuzaki G. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J. Immunol., 2010, vol. 184, no. 8, pp. 4414–4422. doi: 10.4049/jimmunol.0903332
- Patterson K.C., Chen E.S. The Pathogenesis of Pulmonary Sarcoidosis and Implications for Treatme Ribeiro F.M., Goldenberg T. Mycobacteria and autoimmunity. Lupus, 2015, vol. 24, no. 4–5, pp. 374–381. doi: 10.1177/0961203314559634
- Peng X., Ouyang J., Isnard S., Lin J., Fombuena B., Zhu B., Routy J.P. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front. Immunol., 2020, no. 11: 596631. doi: 10.3389/fimmu.2020.596631
- Pérez-Gómez A., Gasca-Capote C., Vitallé J., Ostos F.J., Serna-Gallego A., Trujillo-Rodríguez M., Muñoz-Muela E., Giráldez-Pérez T., Praena-Segovia J., Navarro-Amuedo M.D., Paniagua-García M., García-Gutiérrez M., Aguilar-Guisado M., Rivas-Jeremías I., Jiménez-León M.R., Bachiller S., Fernández-Villar A., Pérez-González A., Gutiérrez-Valencia A., Rafii-El-Idrissi Benhnia M., Weiskopf D., Sette A., López-Cortés L.F., Poveda E., Ruiz-Mateos E.; Virgen del Rocío Hospital COVID-19 and COHVID-GS Working Teams. Deciphering the quality of SARS-CoV-2 specific T-cell response associated with disease severity, immune memory and heterologous response. Clin. Transl. Med., 2022, vol. 12, no. 4: e802. doi: 10.1002/ctm2.802
- Prasse A., Georges C.G., Biller H., Hamm H., Matthys H., Luttmann W., Virchow J.C. Jr. Th1 cytokine pattern in sarcoidosis is expressed by bronchoalveolar CD4+ and CD8+ T cells. Clin. Exp. Immunol., 2000, vol. 122, no. 2, pp. 241–248. doi: 10.1046/j.1365-2249.2000.01365.x
- Radziszewska A., Moulder Z., Jury E.C., Ciurtin C. CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. Int. J. Mol. Sci., 2022, vol. 23, no. 19: 11431. doi: 10.3390/ijms231911431
- Ramasamy A., Wang C., Brode W.M., Verduzco-Gutierrez M., Melamed E. Immunologic and Autoimmune-Related Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Clinical Symptoms and Mechanisms of Disease. Phys. Med. Rehabil. Clin. N. Am., 2023, vol. 34, no. 3, pp. 623–642. doi: 10.1016/j.pmr.2023.04.004
- Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R.,Christian L., Nguyen C.P., Antalek B.J., Benn B.S., Hendriks R.W., van den Blink B., Kool M., Koth L.L. IFN-γ-producing T-Helper 17.1 Cells are increased in sarcoidosis and are more prevalent than T-Helper type 1 Cells. Am.J. Respir. Crit. Care Med., 2016, vol. 193, no. 11, pp. 1281–1291.
- Repac J., Mandić M., Lunić T., Božić B., Božić Nedeljković B. Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis-A systematic immunoinformatics analysis of T cell epitopes. PLoS One, 2021, vol. 16, no. 6: e0253918. doi: 10.1371/journal.pone.025391
- Richmond B.W., Ploetze K., Isom J., Chambers-Harris I., Braun N.A., Taylor T., Abraham S., Mageto Y., Culver D.A., Oswald-Richter K.A., Drake W.P. Sarcoidosis Th17 cells are ESAT-6 antigen specific but demonstrate reduced IFN-γ expression. J. Clin. Immunol., 2013, vol. 33, no. 2, pp. 446–455. doi: 10.1007/s10875-012-9817-6
- Rijnink W.F., Ottenhoff T.H., Joosten S.A. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front. Immunol., 2021, vol. 12: 640168. doi: 10.3389/fimmu.2021.640168
- Rojas M., Herrán M., Ramírez-Santana C., Leung P.S.C., Anaya J.M., Ridgway W.M., Gershwin M.E. Molecular mimicry and autoimmunity in the time of COVID-19. J. Autoimmun., 2023, no. 139: 103070. doi: 10.1016/j.jaut.2023.103070
- Samuel C.E. Antiviral actions of interferons. Clin. Microbiol. Rev., 2001, vol. 14, no. 4, pp. 778–809. doi: 10.1128/CMR.14.4.778-809.2001
- San Segundo D., Arnáiz de Las Revillas F., Lamadrid-Perojo P., Comins-Boo A., González-Rico C., Alonso-Peña M., Irure-Ventura J., Olmos J.M., Fariñas M.C., López-Hoyos M. Innate and Adaptive Immune Assessment at Admission to Predict Clinical Outcome in COVID-19 Patients. Biomedicines, 2021, vol. 9, no. 8: 917. doi: 10.3390/biomedicines9080917
- Saris A., Reijnders T.D.Y., Nossent E.J., Schuurman A.R., Verhoeff J., Asten S.V., Bontkes H., Blok S., Duitman J., Bogaard H.J., Heunks L., Lutter R., van der Poll T., Garcia Vallejo J.J.; ArtDECO consortium and the Amsterdam UMC COVID study group. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax, 2021, vol. 76, no. 10, pp. 1010–1019. doi: 10.1136/thoraxjnl-2020-216256
- Sattler A., Angermair S., Stockmann H., Heim K.M., Khadzhynov D., Treskatsch S., Halleck F., Kreis M.E., Kotsch K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6477–6489. doi: 10.1172/JCI140965
- Saussine A., Tazi A., Feuillet S., Rybojad M., Juillard C., Bergeron A., Dessirier V., Bouhidel F., Janin A., Bensussan A., Bagot M., Bouaziz J.D. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One, 2012, vol. 7, no. 8: e43588. doi: 10.1371/journal.pone.0043588
- Scadding J.G. Mycobacterium tuberculosis in the aetiology of sarcoidosis. Br. Med. J., 1960, vol. 2, no. 5213, pp. 1617–1623.
- Schultheiß C., Paschold L., Simnica D., Mohme M., Willscher E., von Wenserski L., Scholz R., Wieters I., Dahlke C., Tolosa E., Sedding D.G., Ciesek S., Addo M., Binder M. Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease. Immunity, 2020, vol. 53, no. 2, pp. 442–455.e4. doi: 10.1016/j.immuni.2020.06.024
- Sellares J., Strambu I., Crouser E.D., Freudenberg M.A., Gulati M., Hart S., Herzog E., Kolb M., Weichhart T., Drake W.P., Spitzer G., Singh N., Culver D.A. New advances in the development of sarcoidosis models: a synopsis of a symposium sponsored by the Foundation for Sarcoidosis Research. Sarcoidosis Vasc. Diffuse Lung. Dis., 2018, vol. 35, no. 1, pp. 2–4. doi: 10.36141/svdld.v35i1.7032
- Semple P.L., Binder A.B., Davids M., Maredza A., van Zyl-Smit R.N., Dheda K. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am. J. Respir. Crit. Care Med., 2013, vol. 187, no. 11, pp. 1249–58. doi: 10.1164/rccm.201210-1934OC
- Sève P., Pacheco Y., Durupt F., Jamilloux Y., Gerfaud-Valentin M., Isaac S., Boussel L., Calender A., Androdias G., Valeyre D., El Jammal T. Sarcoidosis: A Clinical Overview from Symptoms to Diagnosis. Cells, 2021, vol. 10, no. 4: 766. doi: 10.3390/cells10040766
- Sharma A., Balda S., Apreja M., Kataria K., Capalash N., Sharma P. COVID-19 Diagnosis: Current and Future Techniques. Int. J. Biol. Macromol., 2021, vol. 193 (Pt B), pp. 1835–1844. doi: 10.1016/j.ijbiomac.2021.11.016
- Sharp M., Mustafa A.M., Farah N., Bonham C.A. Interstitial Lung Disease and Sarcoidosis. Clin. Chest Med., 2023, vol. 44, no. 3, pp. 575–584. doi: 10.1016/j.ccm.2023.06.003
- Shoenfeld Y., Aron-Maor A., Tanai A., Ehrenfeld M. BCG and Autoimmunity: Another Two-Edged Sword. J. Autoimmun., 2001, vol. 16, pp. 235–240. doi: 10.1006/jaut.2000.0494
- Song Z., Marzilli L., Greenlee B.M., Chen E.S., Silver R.F., Askin F.B., Teirstein A.S., Zhang Y., Cotter R.J., Moller D.R. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J. Exp. Med., 2005, vol. 201, pp. 755–776. doi: 10.1084/jem.20040429
- Sosa-Hernández V.A., Torres-Ruíz J., Cervantes-Díaz R., Romero-Ramírez S., Páez-Franco J.C., Meza-Sánchez D.E., Juárez-Vega G., Pérez-Fragoso A., Ortiz-Navarrete V., Ponce-de-León A., Llorente L., Berrón-Ruiz L., Mejía-Domínguez N.R., Gómez-Martín D., Maravillas-Montero J.L. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Front. Immunol., 2020, vol. 11: 611004. doi: 10.3389/fimmu.2020.611004
- Spoerl S., Kremer A.N., Aigner M., Eisenhauer N., Koch P., Meretuk L., Löffler P., Tenbusch M., Maier C., Überla K., Heinzerling L., Frey B., Lutzny-Geier G., Winkler T.H., Krönke G., Vetter M., Bruns H., Neurath M.F., Mackensen A., Kremer A.E., Völkl S. Upregulation of CCR4 in activated CD8+ T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection. Eur. J. Immunol., 2021, vol. 51, no. 6, pp. 1436–1448. doi: 10.1002/eji.202049135
- Starshinova A., Malkova А., Kudryavtsev I., Kudlay D., Zinchenko Y., Yablonskiy P. Tuberculosis and autoimmunity: common features. Tuberculosis (Edinb.), 2022, no. 134: 102202. doi: 10.1016/j.tube.2022.102202
- Starshinova A., Zinchenko Y., Malkova A., Kudlay D., Kudryavtsev I., Yablonskiy P. Sarcoidosis and Autoimmune Inflammatory Syndrome Induced by Adjuvants. Life (Basel), 2023, vol. 13, no. 4: 1047. doi: 10.3390/life13041047
- Starshinova A.A., Malkova A.M., Basantsova N.Y., Zinchenko Y.S., Kudryavtsev I.V., Ershov G.A., Soprun L.A., Mayevskaya V.A., Churilov L.P., Yablonskiy P.K. Sarcoidosis as an Autoimmune Disease. Front. Immunol., 2020, no. 10: 2933. doi: 10.3389/fimmu.2019.02933
- Starshinova A.A., Malkova A.M., Zinchenko Yu.S., Basantsova N.Yu., Kudlay D.A. Autoimmune component in the etiology of sarcoidosis. Tuberculosis and Lung Diseases, 2020, vol. 98, no.5, pp. 54–62. doi: 10.21292/2075-1230-2020-98-5-54-62
- Starshinova A.A., Malkova A.М., Zinchenko Yu.S., Basantsova N.Yu., Pavlova M.V., Belyaeva E.N., Lapin S.V., Masing A.V., Surkova E.A., Yablonsky P.K. Characteristics of autoimmune inflammation in patients with pulmonary tuberculosis. Medical Immunology (Russia), 2019, vol. 21, no. 5, pp. 911–918. doi: 10.15789/1563-0625-2019-5-911-918
- Szekanecz Z., Balog A., Constantin T., Czirják L., Géher P., Kovács L., Kumánovics G., Nagy G., Rákóczi É., Szamosi S., Szűcs G., Vályi-Nagy I. COVID-19: autoimmunity, multisystemic inflammation and autoimmune rheumatic patients. Expert Rev. Mol. Med., 2022, vol. 24: e13. doi: 10.1017/erm.2022.10
- Tan M., Liu Y., Zhou R., Deng X., Li F., Liang K., Shi Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology, 2020, vol. 160, no. 3, pp. 261–268. doi: 10.1111/imm.13223
- Tana C., Cinetto F., Mantini C., Bernardinello N., Tana M., Ricci F., Ticinesi A., Meschi T., Scarpa R., Cipollone F., Giamberardino M.A., Spagnolo P. Sarcoidosis and COVID-19: At the Cross-Road between Immunopathology and Clinical Manifestation. Biomedicines, 2022, vol. 10, no. 10: 2525. doi: 10.3390/biomedicines10102525
- Tchernev G., Ananiev J., Cardoso J.C., Wollina U., Verma S.B., Patterson J.W., Dourmishev L.A., Tronnier M., Okamoto H., Mizuno K., Kanazawa N., Gulubova M., Manolova I., Salaro C. Sarcoidosis and molecular mimicry — important etiopathogenetic aspects: current state and future directions. Wien Klin. Wochenschr., 2012, vol. 124, no. 7–8, pp. 227–238. doi: 10.1007/s00508-012-0154-9
- Ten Berge B., Paats M.S., Bergen I.M., van den Blink B., Hoogsteden H.C., Lambrecht B.N., Hendriks R.W., Kleinjan A. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford), 2012, vol. 51, no. 1, pp. 37–46. doi: 10.1093/rheumatology/ker316
- Thillai M., Eberhardt C., Lewin A.M., Potiphar L., Hingley-Wilson S., Sridhar S., Macintyre J., Kon O.M., Wickremasinghe M., Wells A., Weeks M.E., Mitchell D., Lalvani A. Sarcoidosis and tuberculosis cytokine profiles: Indistinguishable in bronchoalveolar lavage but different in blood. PLoS One, 2012, vol. 7: e38083. doi: 10.1371/journal.pone.0038083
- Trougakos I.P., Stamatelopoulos K., Terpos E., Tsitsilonis O.E., Aivalioti E., Paraskevis D., Kastritis E., Pavlakis G.N., Dimopoulos M.A. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J. Biomed. Sci., 2021, vol. 28, no. 1: 9. doi: 10.1186/s12929-020-00703-5
- Vasileva E.V., Kudryavtsev I.V., Maximov G.V., Verbov V.N., Serebriakova M.K., Tkachuk A.P., Totolian Areg A. Impact of HIV infection and tuberculosison the peripheral blood T-cell differentiation. Russian Journal of Infection and Immunity, 2017, vol. 7, no. 2, pp. 151–161. doi: 10.15789/2220-7619-2017-2-151-161
- Velounias R.L., Tull T.J. Human B-cell subset identification and changes in inflammatory diseases. Clin. Exp. Immunol., 2022, vol. 210, no. 3, pp. 201–216. doi: 10.1093/cei/uxac104
- Watad A., Rosenberg V., Tiosano S., Cohen Tervaert J.W., Yavne Y., Shoenfeld Y., Shalev V., Chodick G., Amital H. Silicone breast implants and the risk of autoimmune diseases: real world analysis. Ann. Rheum. Dis., 2018, vol. 77, pp. 1191–1192. doi: 10.1093/ije/dyy217
- Weiskopf D., Schmitz K.S., Raadsen M.P., Grifoni A., Okba N.M.A., Endeman H., van den Akker J.P.C., Molenkamp R., Koopmans M.P.G., van Gorp E.C.M., Haagmans B.L., de Swart R.L., Sette A., de Vries R.D. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol., 2020, vol. 5, no. 48: eabd2071. doi: 10.1126/sciimmunol.abd2071
- WHO global lists of high burden countries for TB, multidrug/rifampicin-resistant TB (MDR/RR-TB) and TB/HIV, 2021–2025. WHO, 2021. 16 p.
- WHO. Coronavirus disease (COVID-19) Pandemic. Geneva: WHO; 2020. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
- Winau F., Weber S., Sad S., de Diego J., Hoops S.L., Breiden B., Sandhoff K., Brinkmann V., Kaufmann S.H., Schaible U.E. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity, 2006, vol. 24, no. 1, pp. 105–117. doi: 10.1016/j.immuni.2005.12.001
- Winheim E., Rinke L., Lutz K., Reischer A., Leutbecher A., Wolfram L., Rausch L., Kranich J., Wratil P.R., Huber J.E., Baumjohann D., Rothenfusser S., Schubert B., Hilgendorff A., Hellmuth J.C., Scherer C., Muenchhoff M., von Bergwelt-Baildon M., Stark K., Straub T., Brocker T., Keppler O.T., Subklewe M., Krug A.B. Impaired function and delayed regeneration of dendritic cells in COVID-19. PLoS Pathog., 2021, vol. 17, no. 10: e1009742. doi: 10.1371/journal.ppat.100974
- Wu D., Yang X.O. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect., 2020, vol. 53, no. 3, pp. 368–370. doi: 10.1016/j.jmii.2020.03.005
- Wu Y.E., Zhang S.W., Peng W.G., Li K.S., Li K., Jiang J.K., Lin J.H., Cai Y.M. Changes in lymphocyte subsets in the peripheral blood of patients with active pulmonary tuberculosis. J. Int. Med. Res., 2009, vol. 37, no. 6, pp. 1742–1749. doi: 10.1177/147323000903700610
- Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, vol. 8, pp. 420–422. doi: 10.1016/S2213-2600(20)30076-X
- Zaid Y., Doré É., Dubuc I., Archambault A.S., Flamand O., Laviolette M., Flamand N., Boilard É., Flamand L. Chemokines and eicosanoids fuel the hyperinflammation within the lungs of patients with severe COVID-19. J. Allergy Clin. Immunol., 2021, vol. 148, no. 2, pp. 368–380.e3. doi: 10.1016/j.jaci.2021.05.032
- Zewdie M., Howe R., Hoff S.T., Doherty T.M., Getachew N., Tarekegne A., Tessema B., Yamuah L., Aseffa A., Abebe M. Ex-vivo characterization of regulatory T cells in pulmonary tuberculosis patients, latently infected persons, and healthy endemic controls. Tuberculosis, 2016, vol. 100, pp. 61–68. doi: 10.1016/j.tube.2016.06.007
- Zhang H., Costabel U., Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front. Immunol., 2021, no. 12: 788502. doi: 10.3389/fimmu.2021.788502
- Zhang M., Zhang S. T Cells in Fibrosis and Fibrotic Diseases. Front. Immunol., 2020, no. 11: 1142. doi: 10.3389/fimmu.2020.01142
- Zhang M., Zheng X., Zhang J., Zhu Y., Zhu X., Liu H., Zeng M, Graner M.W., Zhou B., Chen X. CD19+CD1d+CD5+ B cell frequencies are increased in patients with tuberculosis and suppress Th17 responses. Cell. Immunol., 2012, vol. 274, no. 1–2, pp. 89–97. doi: 10.1016/j.cellimm.2012.01.007
- Zheng H.Y., Zhang M., Yang C.X., Zhang N., Wang X.C., Yang X.P., Dong X.Q., Zheng Y.T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol., 2020, vol. 17, no. 5, pp. 541–543. doi: 10.1038/s41423-020-0401-3
- Zhou E.R., Arce S. Key Players and Biomarkers of the Adaptive Immune System in the Pathogenesis of Sarcoidosis. Int. J. Mol. Sci., 2020, vol. 21, no. 19: 7398. doi: 10.3390/ijms21197398
- Zhuang Z., Lai X., Sun J., Chen Z., Zhang Z., Dai J., Liu D., Li Y., Li F., Wang Y., Zhu A., Wang J., Yang W., Huang J., Li X., Hu L., Wen L., Zhuo J., Zhang Y., Chen D., Li S., Huang S., Shi Y., Zheng K., Zhong N., Zhao J., Zhou D., Zhao J. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med., 2021, vol. 218, no. 4: e20202187. doi: 10.1084/jem.20202187
Дополнительные файлы
