Coronavirus spike protein fragment-containing chimeric virus-like particles stimulate human dendritic cell maturation

Cover Page

Cite item

Full Text

Abstract

Introduction. Viral capsid proteins can assemble into virus-like particles lacking infectivity and bearing parental virus antigens or artificially introduced antigens from other pathogens. At least some of such particles are highly immunogenic and could serve as a platform for promising vaccines. In this work, we assessed an effect of virus-like particles decorated with a SARS-CoV-2 spike protein fragment on human dendritic cell phenotype and functional properties. Materials and methods. The virus-like particles were assembled using chimeric molecules obtained by fusing genetic sequences encoding a norovirus major capsid protein VP1 fragment and a coronavirus spike protein fragment, including the receptor-binding domain. Dendritic cells were obtained from monocytes in vitro. Results. Incubation of immature dendritic cells with virus-like particles induced their phenotypic and functional maturation. The former was revealed by significantly increased expression of HLA-DR, CD80, CD86 and CD83. Dendritic cell phenotype after incubation with virus-like particles at the maximum concentration of 10 μg/ml did not differ significantly from that of mature dendritic cells in positive control. Along with phenotypic maturation, virus-like particles caused a manifold increase in the production of pro-inflammatory tumor necrosis factor-α, anti-inflammatory interleukin-10, as well as interleukin-6, which can stimulate both antibody synthesis and cellular pro-inflammatory reactions. The pronounced stimulation of dendritic cells by virus-like particles coated with coronavirus antigens evidence about successful particle recognition. Finally, we discuss plausible mechanisms for recognition of such virus-like particles by dendritic cell receptors. Conclusion. It has been shown that chimeric virus-like particles induced phenotypic and functional dendritic cell maturation, which is manifested by markedly elevated expression of functionally important membrane molecules, as well as a manifold rise in production of cytokines with a wide functional range. In our opinion, the data obtained indicate a promise of using virus-like particles based on norovirus proteins to display SARS-CoV-2 antigens.

About the authors

V. Yu. Talayev

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Author for correspondence.
Email: talaev@inbox.ru

DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunology

Russian Federation, Nizhniy Novgorod

D. V. Novikov

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Leading Researcher, Laboratory of Immunochemistry

Russian Federation, Nizhniy Novgorod

I. Ye. Zaichenko

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Leading Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhniy Novgorod

M. V. Svetlova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhniy Novgorod

E. V. Voronina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhniy Novgorod

O. N. Babaykina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Medicine), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhniy Novgorod

V. A. Lapin

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

Junior Researcher, Laboratory of Immunochemistry

Russian Federation, Nizhniy Novgorod

D. A. Melentiev

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

Junior Researcher, Laboratory of Immunochemistry

Russian Federation, Nizhniy Novgorod

N. A. Novikova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

DSc (Biology), Professor, Laboratory of Molecular Epidemiology of Viral Infections

 

Russian Federation, Nizhniy Novgorod

A. Yu. Kashnikov

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

Researcher, Laboratory of Molecular Epidemiology of Viral Infections

Russian Federation, Nizhniy Novgorod

V. V. Novikov

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

DSc (Biology), Professor, Head of the Laboratory of Immunochemistry

Russian Federation, Nizhniy Novgorod

References

  1. Новиков Д.В., Мелентьев Д.А., Мохонов В.В., Кашников А.Ю., Новикова Н.А., Лапин В.А., Мохонова Е.В., Новиков В.В. Получение вирусоподобных частиц норовируса (Caliciviridae: Norovirus), содержащих белок VP1 энтеровируса Echovirus 30 (Picornaviridae: Enterovirus: Enterovirus B) // Вопросы вирусологии. 2021. Т. 66, № 5. C. 383–389. [Novikov D.V., Melentev D.A., Mokhonov V.V., Kashnikov A.Y., Novikova N.A., Lapin V.A., Mokhonova E.V., Novikov V.V. Construction of norovirus (Caliciviridae: Norovirus) virus-like particles containing VP1 of the Echovirus 30 (Picornaviridae: Enterovirus: Enterovirus B). Voprosy virusologii = Problems of Virology, 2021, vol. 66, no. 5, рр. 383–389. (In Russ.)] doi: 10.36233/0507-4088-79
  2. Талаев В.Ю., Заиченко И.Е., Бабайкина О.Н., Светлова М.В., Воронина Е.В. Пути эндоцитоза вирусоподобных частиц и презентация поглощенных антигенов // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 219–233. [Talayev V.Yu., Zaichenko I.Ye., Babaykina O.N., Svetlova M.V., Voronina E.V. Virus-like particle endocytosis pathways and presentation of captured antigens. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 219–233. (In Russ.)] doi: 10.15789/2220-7619-VPE-8045
  3. Талаев В.Ю., Светлова М.В., Заиченко И.Е., Бабайкина О.Н., Воронина Е.В., Чистяков С.И. Взаимодействие В-клеточных рецепторов и антигенов с различным пространственным расположением // Инфекция и иммунитет. 2023. Т. 13, № 5. C. 809–821. [Talayev V.Yu., Svetlova M.V., Zaichenko I.Ye., Babaykina O.N., Voronina E.V., Chistyakov S.I. Interaction of B-cell receptors and antigens with different spatial arrangement. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 5, pp. 809–821. (In Russ.)] doi: 10.15789/2220-7619-EOB-14033
  4. Baric R.S., Yount B., Lindesmith L., Harrington P.R., Greene S.R., Tseng F.C., Davis N., Johnston R.E., Klapper D.G., Moe C.L. Expression and self-assembly of Norwalk virus capsid protein from venezuelan equine encephalitis virus replicons. J. Virol., 2002, vol. 76, no. 6, pp. 3023–3030. doi: 10.1128/jvi.76.6.3023-3030.2002
  5. Barreda D., Santiago C., Rodríguez J.R., Rodríguez J.F., Casasnovas J.M., Mérida I., Ávila-Flores A. SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Promote a Proinflammatory Activation Profile on Human Dendritic Cells. Cells, 2021, vol. 10, no. 12: 3279. doi: 10.3390/cells10123279
  6. Battin C., De Sousa Linhares A., Paster W., Isenman D.E., Wahrmann M., Leitner J., Zlabinger G.J., Steinberger P., Hofer J. Neuropilin-1 Acts as a Receptor for Complement Split Products. Front. Immunol., 2019, vol. 10: 2209. doi: 10.3389/fimmu.2019.02209
  7. Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., van der Meer F., Kallio K., Kaya T., Anastasina M., Smura T., Levanov L., Szirovicza L., Tobi A., Kallio-Kokko H., Österlund P., Joensuu M., Meunier F.A., Butcher S.J., Winkler M.S., Mollenhauer B., Helenius A., Gokce O., Teesalu T., Hepojoki J., Vapalahti O., Stadelmann C., Balistreri G., Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, vol. 370, no. 6518, pp. 856–860. doi: 10.1126/science.abd2985
  8. Chen R., Neill J.D., Noel J.S., Hutson A.M., Glass R.I., Estes M.K., Prasad B.V. Inter- and intragenus structural variations in caliciviruses and their functional implications. J. Virol., 2004, vol. 78, no. 12, pp. 6469–6479. doi: 10.1128/JVI.78.12.6469-6479.2004
  9. Choudhury A., Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J. Med. Virol., 2020, vol. 92, no. 10, pp. 2105–2113. doi: 10.1002/jmv.25987
  10. Curreli S., Wong B.S., Latinovic O., Konstantopoulos K., Stamatos N.M. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: Role in cell migration. J. Leukoc. Biol., 2016, vol. 100, no. 6, pp. 1323–1334. doi: 10.1189/jlb.2A1114-534R
  11. Daly J.L., Simonetti B., Klein K., Chen K.E., Williamson M.K., Antón-Plágaro C., Shoemark D.K., Simón-Gracia L., Bauer M., Hollandi R., Greber U.F., Horvath P., Sessions R.B., Helenius A., Hiscox J.A., Teesalu T., Matthews D.A., Davidson A.D., Collins B.M., Cullen P.J., Yamauchi Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020, vol. 370, no. 6518, pp. 861–865. doi: 10.1126/science.abd3072
  12. Hardy M.E. Norovirus protein structure and function. FEMS Microbiol. Lett., 2005, vol. 253, no. 1, pp. 1–8. doi: 10.1016/j.femsle.2005.08.031
  13. Herbst-Kralovetz M., Mason H.S., Chen Q. Norwalk virus-like particles as vaccines. Expert Rev. Vaccines, 2010, vol. 9, no. 3, pp. 299–307. doi: 10.1586/erv.09.163
  14. Jiang X., Wang M., Graham D.Y., Estes M.K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol., 1992, vol. 66, no. 11, pp. 6527–6532. doi: 10.1128/JVI.66.11.6527-6532.1992
  15. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, vol. 5, no. 4, pp. 562–569. doi: 10.1038/s41564-020-0688-y
  16. Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J. Virol., 2015, vol. 89, no. 4, pp. 1954–1964. doi: 10.1128/JVI.02615-14
  17. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D.V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Egorova D.A., Shmarov M.M., Nikitenko N.A., Gushchin V.A., Smolyarchuk E.A., Zyryanov S.K., Borisevich S.V., Naroditsky B.S., Gintsburg A.L. Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 2021, vol. 397, no. 10275, pp. 671–681. doi: 10.1016/S0140-6736(21)00234-8
  18. Malik Y.A. Properties of Coronavirus and SARS-CoV-2. Malays. J. Pathol., 2020, vol. 42, no. 1, pp. 3–11.
  19. Mobini S., Chizari M., Mafakher L., Rismani E., Rismani E. Structure-based study of immune receptors as eligible binding targets of coronavirus SARS-CoV-2 spike protein. J. Mol. Graph. Model., 2021, vol. 108: 107997. doi: 10.1016/j.jmgm.2021.107997
  20. Mohsen M.O., Gomes A.C., Vogel M., Bachmann M.F. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines, 2018, vol. 6, no 3, pp. 37. doi: 10.3390/vaccines6030037
  21. Pang H.B., Braun G.B., Friman T., Aza-Blanc P., Ruidiaz M.E., Sugahara K.N., Teesalu T., Ruoslahti E. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat. Commun., 2014, vol. 5: 4904. doi: 10.1038/ncomms5904
  22. Prasad B.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., Estes M.K. X-ray crystallographic structure of the Norwalk virus capsid. Science, 1999, vol. 286, pp. 287–290. doi: 10.1126/science.286.5438.287
  23. Prasad B.V., Rothnagel R., Jiang X., Estes M.K. Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J. Virol., 1994, vol. 68, pp. 5117–5125. doi: 10.1128/jvi.68.8.5117-5125.1994
  24. Rando H.M., Lordan R., Lee A.J., Naik A., Wellhausen N., Sell E., Kolla L., COVID-19 Review Consortium, Gitter A., Greene C.S. Application of Traditional Vaccine Development Strategies to SARS-CoV-2. mSystems, 2023, vol. 8, no. 2: e0092722. doi: 10.1128/msystems.00927-22
  25. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med., 1994, vol. 179, pp. 1109–1118. doi: 10.1084/jem.179.4.1109
  26. Santi L., Batchelor L., Huang Z., Hjelm B., Kilbourne J., Arntzen C.J., Chen Q., Mason H.S. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine, 2008, vol. 26, no. 15, pp. 1846–1854. doi: 10.1016/ j.vaccine.2008.01.053
  27. Song X., Hu W., Yu H., Zhao L., Zhao Y., Zhao X., Xue H.H., Zhao Y. Little to no expression of angiotensin-converting enzyme-2 on most human peripheral blood immune cells but highly expressed on tissue macrophages. Cytometry A, 2023, vol. 103, no. 2, pp. 136–145. doi: 10.1002/cyto.a.24285
  28. Steinman R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol., 1991, vol. 9, pp. 271–296. doi: 10.1146/annurev.iy.09.040191.001415
  29. Talayev V., Zaichenko I., Svetlova M., Matveichev A., Babaykina O., Voronina E., Mironov A. Low-dose influenza vaccine Grippol Quadrivalent with adjuvant Polyoxidonium induces a T helper-2 mediated humoral immune response and increases NK cell activity. Vaccine, 2020, vol. 38, no. 42, pp. 6645–6655. doi: 10.1016/j.vaccine.2020.07.053
  30. Tan M., Jiang X. The p-domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J. Virol., 2005, vol. 79, pp. 14017–14030. doi: 10.1128/JVI.79.22.14017-14030.2005
  31. Teesalu T., Sugahara K.N., Kotamraju V.R., Ruoslahti E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 38, pp. 16157–16162. doi: 10.1073/pnas.0908201106
  32. Tordjman R., Lepelletier Y., Lemarchandel V., Cambot M., Gaulard P., Hermine O., Roméo P.H. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat. Immunol., 2002, vol. 3, no. 5, pp. 477–482. doi: 10.1038/ni789
  33. Tortorici M.A., Veesler D. Structural insights into coronavirus entry. Adv. Virus. Res., 2019, vol. 105, pp. 93–116. doi: 10.1016/bs.aivir.2019.08.002
  34. Tulimilli S.V., Dallavalasa S., Basavaraju C.G., Kumar Rao V., Chikkahonnaiah P., Madhunapantula S.V., Veeranna R.P. Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines (Basel), 2022, vol. 10, no. 10: 1751. doi: 10.3390/vaccines10101751
  35. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020, vol. 181, no. 2, pp. 281–292.e6. doi: 10.1016/j.cell.2020.02.058
  36. Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J., Sheng J., Quan L., Xia Z., Tan W., Cheng G., Jiang T. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe, 2020, vol. 27, no. 3, pp. 325–328. doi: 10.1016/j.chom.2020.02.001
  37. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, vol. 367, no. 6485, pp. 1444–1448. doi: 10.1126/science.abb2762
  38. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270–273. doi: 10.1038/s41586-020-2012-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Characteristics of SN-RBD VLPs. Note. A) A scheme of the genetic construct encoding the chimeric protein SN-RBD. B) Electropherogram of purified SN-RBD protein. С) VLPs electron microscopic images; magnification ×15 000.

Download (256KB)
3. Figure 2. Expression of membrane molecules on unstimulated iDCs (thin gray line) and DCs incubated with 10 μg/ml SN-RBD VLPs (thick black line) or equivalent CS amount (thin black line). Note. The dotted line shows DC negative control staining exposed to VLPs. Membrane molecules and fluorescence intensity are indicated below the x-axis. A representative experiment (n = 11) is presented.

Download (265KB)
4. Figure 3. Effect of SN-RBD VLPs on DC maturation. Note. The y-axis: percentage of cells expressing the molecule or the GMFI for stained molecule. The type of stimulant is indicated under the x-axis, the VLP concentration is indicated in the legend. Significant differences (p < 0.05 in paired t-test with Bonferroni correction) compared to unstimulated DCs (*) and CS-treated DCs (†). Data are presented as M±m (n = 11).

Download (393KB)
5. Figure 4. Effect of SN-RBD VLPs on cytokine production in DC cultures. Note. The type of stimulant is under the x-axis, cytokine concentrations are shown on the y-axis, VLP concentration shown in the legend. Significant differences (p < 0.05; Wilcoxon test with Bonferroni correction) when compared with unstimulated DCs (*) and DCs cultured with CS (†). Data are presented as Median ± quartile (n = 11).

Download (242KB)

Copyright (c) 2024 Talayev V.Y., Novikov D.V., Zaichenko I.Y., Svetlova M.V., Voronina E.V., Babaykina O.N., Lapin V.A., Melentiev D.A., Novikova N.A., Kashnikov A.Y., Novikov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies