Роль РНК-вирусов в онкогенезе человека

Обложка

Цитировать

Полный текст

Аннотация

Известно, что многие РНК-вирусы являются онкогенными (или канцерогенными) при различных видах рака у животных и человека. Увеличение заболеваемости и распространенности вирусов, вызывающих рак, в человеческой популяции можно расценивать как ключевой предшественник развития различных видов рака. Семейство ретровирусов и вирус гепатита С (ВГС) также вызывают рак. Вирусные онкопротеины, такие как Tax Т-лимфотропного вируса человека (HTLV-1), взаимодействуют с клеточным комплексом убиквитинирования, таким как супрессор опухоли цилиндроматоза, убиквитин-специфические протеазы 7, 11, 15 и 20, А-20 и STAMBPL1 для усиления клеточных сигнальных путей. Вирусные онкопротеины связываются с деубиквитиназой, что приводит к пролиферации инфицированных клеток и клеточной трансформации. Протоонкогены (гены c-onc) представляют собой клеточную форму генов v-onc. Активация генов c-onc приводит к росту клеток. Гены с-onc трансформируются в онкогенную форму при вирусной инфекции могут выступать в качестве протеинкиназ, факторов роста, рецепторов факторов роста и ДНК-связывающих белков. Изучение трансформирующих ретровирусов и их онкогенов, а также разных механизмов, используемых другими РНК-вирусами для подавления роста и проапоптотической функции генов-супрессоров опухолей привносит новые данные в понимание биологии рака. Онкогенные РНК-вирусы являются важными экспериментальными молекулярными моделями по изучению клеточных сетей, включая открытие онкогенов и супрессоров опухолей. Понимание различных стратегий РНК-вирусов, а также функций их белков помогает расширить стратегии для последующего наблюдения, профилактики и лечения больных раком, обусловленного различными вирусами.

Об авторах

М. Фазлалипур

Институт Пастера Ирана

Автор, ответственный за переписку.
Email: mfp.virology@gmail.com

кандидат наук по вирусологии, ассистент, Сотрудничающего центра ВОЗ по стандартам и исследованиям бешенства; ассистент Исследовательского центра новых и вновь возникающих инфекционных заболеваний

Иран, Тегеран

Х.Р. Моллаи

Керманский университет медицинских наук

Email: mfp.virology@gmail.com

кандидат наук по вирусологии, ассистент

Иран, г. Керман

Список литературы

  1. Ajiro M., Zheng Z.M. Oncogenes and RNA splicing of human tumor viruses. Emerg. Microbes Infect., 2014, vol. 3, no. 9: e63. doi: 10.1038/emi.2014.62
  2. Alibek K., Kakpenova A., Mussabekova A., Sypabekova M., Karatayeva N. Role of viruses in the development of breast cancer. Infect. Agent Cancer, 2013, no. 8: 32. doi: 10.1186/1750-9378-8-32
  3. Alter M.J. Prevention of spread of hepatitis C. Hepatology, 2002, vol. 36, no. 5, suppl. 1, pp. S93–S98. doi: 10.1053/jhep.2002.36389
  4. Amano M., Setoyama M., Grant A., Kerdel F.A. Human T-lymphotropic virus 1 (HTLV-1) infection — dermatological implications. Int. J. Dermatol., 2011, vol. 50, no. 8, pp. 915–20. doi: 10.1111/j.1365-4632.2011.04882.x
  5. Andersson J. An Overview of Epstein-Barr Virus: from Discovery to Future Directions for Treatment and Prevention. Herpes, 2000, vol. 7, no. 3, pp. 76–82
  6. Banerjee A., Ray R.B., Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses, 2010, vol. 2, no. 9, pp. 2108–2133. doi: 10.3390/v2092108
  7. Batra N., Ghag I., Babu K., Divanji T. Reviewing Oncogenes and Proto-Oncogenes. International Journal of Scientific Research in Science and Technology, 2021, vol. 8, iss. 3, pp. 458–479. doi: 10.32628/IJSRST2183100
  8. Cancer a Comprehensive Treatise 2: Etiology: Viral Carcinogenesis. Ed. Becker F. Springer, 2013. 455 p.
  9. Becsei-Kilborn E. Scientific discovery and scientific reputation: the reception of Peyton Rous’ discovery of the chicken sarcoma virus. J. Hist. Biol., 2010, vol. 43, no. 1, pp. 111–157. doi: 10.1007/s10739-008-9171-y
  10. Beemon K., Rosenberg N. Mechanisms of Oncogenesis by Avian and Murine Retroviruses. Cancer Associated Viruses, 2011, pp. 677–704.
  11. Beuten J., Gelfond J.A., Franke J.L., Shook S., Johnson-Pais T.L., Thompson I.M., Leach R.J. Single and multivariate associations of MSR1, ELAC2, and RNASEL with prostate cancer in an ethnic diverse cohort of men. Cancer Epidemiol Biomarkers Prev., 2010, vol. 19, no. 2, pp. 588–599. doi: 10.1158/1055-9965.EPI-09-0864
  12. Bevilacqua G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses, 2022, vol. 14, no. 8: 1704. doi: 10.3390/v14081704
  13. Birkenheuer C.H., Brewster C.D., Quackenbush S.L., Rovnak J. Retroviral cyclin controls cyclin-dependent kinase 8-mediated transcription elongation and reinitiation. J. Virol., 2015, vol. 89, no. 10, pp. 5450–5461. doi: 10.1128/JVI.00464-15
  14. Boeras I., Sakalian M., West J.T. Translation of MMTV Gag requires nuclear events involving splicing motifs in addition to the viral Rem protein and RmRE. Retrovirology, 2012, no. 9: 8. doi: 10.1186/1742-4690-9-8
  15. Brownell J., Bruckner J., Wagoner J., Thomas E., Loo Y.M., Gale M Jr, Liang T.J., Polyak S.J. Direct, interferon-independent activation of the CXCL10 promoter by NF-κB and interferon regulatory factor 3 during hepatitis C virus infection. J. Virol., 2014, vol. 88, no. 3, pp. 1582–1590. doi: 10.1128/JVI.02007-13
  16. Campbell-Yesufu O.T., Gandhi R.T. Update on human immunodeficiency virus (HIV)-2 infection. Clin. Infect. Dis., 2011, vol. 52, no. 6, pp. 780–787. doi: 10.1093/cid/ciq248
  17. Chamanian M., Purzycka K.J., Wille P.T., Ha J.S., McDonald D., Gao Y., Le Grice S.F., Arts E.J. A cis-acting element in retroviral genomic RNA links Gag-Pol ribosomal frameshifting to selective viral RNA encapsidation. Cell Host Microbe, 2013, vol. 13, no. 2, pp. 181–192. doi: 10.1016/j.chom.2013.01.007
  18. Chen A.A., Gheit T., Franceschi S., Tommasino M., Clifford G.M.; IARC HPV Variant Study Group. Human Papillomavirus 18 Genetic Variation and Cervical Cancer Risk Worldwide. J. Virol., 2015, vol. 89, no. 20, pp. 10680–10687. doi: 10.1128/JVI.01747-15
  19. Cherian M.A., Baydoun H.H., Al-Saleem J., Shkriabai N., Kvaratskhelia M., Green P., Ratner L. Akt Pathway Activation by Human T-cell Leukemia Virus Type 1 Tax Oncoprotein. J. Biol. Chem., 2015, vol. 290, no. 43, pp. 26270–26281. doi: 10.1074/jbc.M115.684746
  20. Coffin J.M. The discovery of HTLV-1, the first pathogenic human retrovirus. Proc. Natl Acad. Sci. USA, 2015, vol. 112, no. 51, pp. 15525–15529. doi: 10.1073/pnas.1521629112
  21. Cook L.B., Elemans M., Rowan A.G., Asquith B. HTLV-1: persistence and pathogenesis. Virology, 2013, vol. 435, no. 1, pp. 131–140. doi: 10.1016/j.virol.2012.09.028
  22. Currer R., Van Duyne R., Jaworski E., Guendel I., Sampey G., Das R., Narayanan A., Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front. Microbiol., 2012, no. 3: 406. doi: 10.3389/fmicb.2012.00406
  23. Delbridge A.R., Grabow S., Strasser A., Vaux D.L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer, 2016, vol. 16, no. 2, pp. 99–109. doi: 10.1038/nrc.2015.17
  24. Deng L., Meng T., Chen L., Wei W., Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther., 2020, vol. 5, no. 1: 11. doi: 10.1038/s41392-020-0107-0
  25. Downey R.F., Sullivan F.J., Wang-Johanning F., Ambs S., Giles F.J., Glynn S.A. Human endogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice? Int. J. Cancer, 2015, vol. 137, no. 6, pp. 1249–1257. doi: 10.1002/ijc.29003
  26. Eggleton J.S., Nagalli S. Highly Active Antiretroviral Therapy (HAART), 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
  27. El-Serag H.B., Mason A.C. Risk factors for the rising rates of primary liver cancer in the United States. Arch. Intern. Med., 2000, vol. 160, no. 21, pp. 3227–3230. doi: 10.1001/archinte.160.21.3227
  28. Elemento O. The road from Rous sarcoma virus to precision medicine. J. Exp. Med., 2021, vol. 218, no. 4: e20201754. doi: 10.1084/jem.20201754
  29. Ernzen K.J., Panfil A.R. Regulation of HTLV-1 transformation. Biosci. Rep., 2022, vol. 42, no. 3: BSR20211921. doi: 10.1042/BSR20211921
  30. Eshghifar N., Farrokhi N., Naji T., Zali M. Tumor suppressor genes in familial adenomatous polyposis. Gastroenterol. Hepatol. Bed. Bench., 2017, vol. 10, no. 1, pp. 3–13.
  31. Fan H. Cell transformation by RNA viruses: an overview. Viruses, 2011, vol. 3, no. 6, pp. 858–860. doi: 10.3390/v3060858
  32. Fan H., Johnson C. Insertional oncogenesis by non-acute retroviruses: implications for gene therapy. Viruses, 2011, vol. 3, no. 4, pp. 398–422. doi: 10.3390/v3040398
  33. Farci P. New insights into the HCV quasispecies and compartmentalization. Semin. Liver Dis., 2011, vol. 31, no. 4, pp. 356–374. doi: 10.1055/s-0031-1297925
  34. Ghoreshi Z.A., Molaei H.R., Arefinia N. The Role of DNA Viruses in Human Cancer. Cancer Inform., 2023, no. 22: 11769351231154186. doi: 10.1177/11769351231154186
  35. Fazlalipour M., Keyvani H., Monavari S.H., Mollaie H.R. Expression, Purification and Immunogenic Description of a Hepatitis C Virus Recombinant CoreE1E2 Protein Expressed by Yeast Pichia pastoris. Jundishapur J. Microbiol., 2015, vol. 8, no. 4: e17157. doi: 10.5812/jjm.8(4)2015.17157
  36. Fochi S., Mutascio S., Bertazzoni U., Zipeto D., Romanelli M.G. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role. Front. Microbiol., 2018, no. 9: 285. doi: 10.3389/fmicb.2018.00285
  37. Freed E.O. HIV-1 replication. Somat. Cell. Mol. Genet., 2001, vol. 26, no. 1-6, pp. 13–33. doi: 10.1023/a:1021070512287
  38. Gallo R.C. Research and discovery of the first human cancer virus, HTLV-1. Best Pract. Res. Clin. Haematol., 2011, vol. 24, no. 4, pp. 559–565. doi: 10.1016/j.beha.2011.09.012
  39. Garcia-Montojo M., Doucet-O’Hare T., Henderson L., Nath A. Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit. Rev. Microbiol., 2018, vol. 44, no. 6, pp. 715–738. doi: 10.1080/1040841X.2018.1501345
  40. Gatza M.L., Watt J.C., Marriott S.J. Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene, 2003, vol. 22, no. 33, pp. 5141–5149. doi: 10.1038/sj.onc.1206549
  41. Geijtenbeek T.B., Kwon D.S., Torensma R., van Vliet S.J., van Duijnhoven G.C., Middel J., Cornelissen I.L., Nottet H.S., KewalRamani V.N., Littman D.R., Figdor C.G., van Kooyk Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell, 2000, vol. 100, no. 5, pp. 587–597. doi: 10.1016/s0092-8674(00)80694-7
  42. Gessain A., Mahieux R. Tropical spastic paraparesis and HTLV-1 associated myelopathy: clinical, epidemiological, virological and therapeutic aspects. Rev. Neurol. (Paris), 2012, vol. 168, no. 3, pp. 257–269. doi: 10.1016/j.neurol.2011.12.006
  43. Gillet N.A., Malani N., Melamed A., Gormley N., Carter R., Bentley D., Berry C., Bushman F.D., Taylor G.P., Bangham C.R. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood, 2011, vol. 117, no. 11, pp. 3113–3122. doi: 10.1182/blood-2010-10-312926
  44. Grulich A.E., Vajdic C.M. The epidemiology of cancers in human immunodeficiency virus infection and after organ transplantation. Semin. Oncol., 2015, vol. 42, no. 2, pp. 247–257. doi: 10.1053/j.seminoncol.2014.12.029
  45. Harhaj E.W., Giam C.Z. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J., 2018, vol. 285, no. 18, pp. 3324–3336. doi: 10.1111/febs.14492
  46. Hashikura Y., Umeki K., Umekita K., Nomura H., Yamamoto I., Hasegawa H., Yanagihara K., Okayama A. The diversity of the structure and genomic integration sites of HTLV-1 provirus in MT-2 cell lines. Hum. Cell, 2016, vol. 29, no. 3, pp. 122–129. doi: 10.1007/s13577-016-0136-8
  47. Hassan M., Selimovic D., Ghozlan H., Abdel-Kader O. Induction of high-molecular-weight (HMW) tumor necrosis factor(TNF) alpha by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-kappaB-dependent activation. Cell. Signal., 2007, vol. 19, no. 2, pp. 301–311. doi: 10.1016/j.cellsig.2006.07.002
  48. Heride C., Urbé S., Clague M.J. Ubiquitin code assembly and disassembly. Curr. Biol., 2014, vol. 24, no. 6, pp. R215–R220. doi: 10.1016/j.cub.2014.02.002
  49. Hofacre A., Fan H. Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses, 2010, vol. 2, no. 12, pp. 2618–2648. doi: 10.3390/v2122618
  50. Howley P.M., Knipe D.M., Cohen J.L., Damania B.A. Fields Virology: DNA Viruses. Lippincott Williams & Wilkins, 2021.
  51. Hu W.Y., Myers C.P., Kilzer J.M., Pfaff S.L., Bushman F.D. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol., 2002, vol. 12, no. 15, pp. 1301–1311. doi: 10.1016/s0960-9822(02)00975-2
  52. Huang Q., Niu Z., Han J., Liu X., Lv Z., Li H., Yuan L., Li X., Sun S., Wang H., Huang X. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling. Oncotarget, 2017, vol. 8, no. 31, pp. 51123–51133. doi: 10.18632/oncotarget.17699
  53. Huang Y., Staschke K., De Francesco R., Tan S.L. Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology, 2007, vol. 364, no. 1, pp. 1–9. doi: 10.1016/j.virol.2007.01.042
  54. Irshad M., Gupta P., Irshad K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection. World J. Hepatol., 2017, vol. 9, no. 36, pp. 1305–1314. doi: 10.4254/wjh.v9.i36.1305
  55. Johnson C., Hung F. Jaagsiekte Sheep Retrovirus and Lung Cancer. In: Cancer Associated Viruses. Springer, 2011, pp. 755–791.
  56. Kakisi O.K., Robinson M.J., Tettmar K.I., Tedder R.S. The rise and fall of XMRV. Transfus. Med., 2013, vol. 23, no. 3, pp. 142–151. doi: 10.1111/tme.12049
  57. Kannian P., Yin H., Doueiri R., Lairmore M.D., Fernandez S., Green P.L. Distinct transformation tropism exhibited by human T lymphotropic virus type 1 (HTLV-1) and HTLV-2 is the result of postinfection T cell clonal expansion. J. Virol., 2012, vol. 86, no. 7, pp. 3757–3766. doi: 10.1128/JVI.06900-11
  58. Katoh I., Kurata S. Association of endogenous retroviruses and long terminal repeats with human disorders. Front. Oncol., 2013, no. 3: 234. doi: 10.3389/fonc.2013.00234
  59. Katsura Y., Asai S. Evolutionary Medicine of Retroviruses in the Human Genome. Am. J. Med. Sci., 2019, vol. 358, no. 6, pp. 384–388. doi: 10.1016/j.amjms.2019.09.007
  60. Kengne M., Tsata D.C.W., Ndomgue T., Nwobegahay J.M. Prevalence and risk factors of HTLV-1/2 and other blood borne infectious diseases among blood donors in Yaounde Central Hospital, Cameroon. Pan. Afr. Med. J., 2018, no. 30: 125. doi: 10.11604/pamj.2018.30.125.14802
  61. Keyvani H., Fazlalipour M., Monavari S.H., Mollaie H.R. Hepatitis C virus — proteins, diagnosis, treatment and new approaches for vaccine development. Asian Pac. J. Cancer Prev., 2012, vol. 13, no. 12, pp. 5931–5949.
  62. Kim S.G., Zhou J., Solomon C., Zheng Y., Suzuki T., Chen M., Song S., Jiang N., Cho S., Mao J.J. Effects of growth factors on dental stem/progenitor cells. Dent. Clin. North Am., 2012, vol. 56, no. 3, pp. 563–575. doi: 10.1016/j.cden.2012.05.001
  63. Klein G. Perspectives in studies of human tumor viruses. Front. Biosci., 2002, vol. 7, pp. d268–d274. doi: 10.2741/A726
  64. Knipe D., Howley P., Griffin D., Lamb R., Martin M., Roizman B., Straus S. Fields Virology. Vol. 1 and 2. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013.
  65. Kontomanolis E.N., Koutras A., Syllaios A., Schizas D., Mastoraki A., Garmpis N., Diakosavvas M., Angelou K., Tsatsaris G., Pagkalos A., Ntounis T., Fasoulakis Z. Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Res., 2020, vol. 40, no. 11, pp. 6009–6015. doi: 10.21873/anticanres.14622
  66. Korf B.R. Neurofibromatosis. Handb. Clin. Neurol., 2013, vol. 111, pp. 333–340. doi: 10.1016/B978-0-444-52891-9.00039-7
  67. Lin M.V., King L.Y., Chung R.T. Hepatitis C virus-associated cancer. Annu. Rev. Pathol., 2015, vol. 10, pp. 345–370. doi: 10.1146/annurev-pathol-012414-040323
  68. Machida K., Liu J.C., McNamara G., Levine A., Duan L., Lai M.M. Hepatitis C virus causes uncoupling of mitotic checkpoint and chromosomal polyploidy through the Rb pathway. J. Virol., 2009, vol. 83, no. 23, pp. 12590–12600. doi: 10.1128/JVI.02643-08
  69. Malekshahi, A., Alamdary, A., Safarzadeh, A., Khavandegar, A., Nikoo, H. R., Safavi, M., Ajorloo, M. Potential Roles of Core and Core+1 Proteins During the Chronic Phase of Hepatitis C Virus Infection. Future Virology, 2023, vol. 18, no. 3, pp. 193–207. doi: 10.2217/fvl-2022-0117
  70. Manns M.P., Buti M., Gane E., Pawlotsky J.M., Razavi H., Terrault N., Younossi Z. Hepatitis C virus infection. Nat. Rev. Dis. Primers, 2017, no. 3: 17006. doi: 10.1038/nrdp.2017.6
  71. Marriott A.C., Dimmock N.J. Defective interfering viruses and their potential as antiviral agents. Rev. Med. Virol., 2010, vol. 20, no. 1, pp. 51–62. doi: 10.1002/rmv.641
  72. Martin I.V., Borkham-Kamphorst E., Zok S., van Roeyen C.R., Eriksson U., Boor P., Hittatiya K., Fischer H.P., Wasmuth H.E., Weiskirchen R., Eitner F., Floege J., Ostendorf T. Platelet-derived growth factor (PDGF)-C neutralization reveals differential roles of PDGF receptors in liver and kidney fibrosis. Am. J. Pathol., 2013, vol. 182, no. 1, pp. 107–117. doi: 10.1016/j.ajpath.2012.09.006
  73. Martin J.L., Maldonado J.O., Mueller J.D., Zhang W., Mansky L.M. Molecular Studies of HTLV-1 Replication: An Update. Viruses, 2016, vol. 8, no. 2: 31. doi: 10.3390/v8020031
  74. Martinez M.P., Al-Saleem J., Green P.L. Comparative virology of HTLV-1 and HTLV-2. Retrovirology, 2019, vol. 16, no. 1: 21. doi: 10.1186/s12977-019-0483-0
  75. Maślikowski B.M., Néel B.D., Wu Y., Wang L., Rodrigues N.A., Gillet G., Bédard P.A. Cellular processes of v-Src transformation revealed by gene profiling of primary cells — implications for human cancer. BMC Cancer, 2010, no. 10: 41. doi: 10.1186/1471-2407-10-41
  76. McLaughlin-Drubin M.E., Munger K. Viruses associated with human cancer. Biochim. Biophys Acta, 2008, vol. 1782, no. 3, pp. 127–150. doi: 10.1016/j.bbadis.2007.12.005
  77. Mesri E.A., Feitelson M.A., Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell. Host Microbe, 2014, vol. 15, no. 3, pp. 266–282. doi: 10.1016/j.chom.2014.02.011
  78. Monavari S.H., Keyvani H., Mollaie H., Fazlalipour M., Salehi-Vaziri M., Bokharaei-Salim F., Mollaie R., Sadeghi F. Detection of human T-cell lymphotropic virus Type-1 among patients with malignant hematological diseases in Capital of Iran, Tehran. J. Gen. Mol. Virol., 2011, vol. 3, no. 5, pp. 67–70.
  79. Montanheiro P., Vergara M.P., Smid J., da Silva Duarte A.J., de Oliveira A.C., Casseb J. High production of RANTES and MIP-1alpha in the tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). J. Neuroimmunol., 2007, vol. 188, no. 1–2, pp. 138–142. doi: 10.1016/j.jneuroim.2007.05.015
  80. Moore P.S., Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer., 2010, vol. 10, no. 12, pp. 878–889. doi: 10.1038/nrc2961
  81. Morse H.C. 3rd, Hartley J.W., Fredrickson T.N., Yetter R.A., Majumdar C., Cleveland J.L., Rapp U.R. Recombinant murine retroviruses containing avian v-myc induce a wide spectrum of neoplasms in newborn mice. Proc. Natl Acad. Sci. USA, 1986, vol. 83, no. 18, pp. 6868–6872. doi: 10.1073/pnas.83.18.6868
  82. Neutzner M., Neutzner A. Enzymes of ubiquitination and deubiquitination. Essays Biochem., 2012, vol. 52, pp. 37–50. doi: 10.1042/bse0520037
  83. Nosaka K., Matsuoka M. Adult T-cell leukemia-lymphoma as a viral disease: subtypes based on viral aspects. Cancer Sci., 2021, vol. 112, no. 5, pp. 1688–1694. doi: 10.1111/cas.14869
  84. Olah E. Cancer Susceptibility Genes in Heritable Cancer Syndromes. Nőgyógyászati Onkológia, 1997, vol. 2, pp. 119–128.
  85. Overbaugh J., Bangham C.R. Selection forces and constraints on retroviral sequence variation. Science, 2001, vol. 292, no. 5519, pp. 1106–1109. doi: 10.1126/science.1059128
  86. Panasenko O.O. Identification of ubiquitinated proteins. Materials and Methods, 2014, 25 p. doi: 10.13070/mm.en.4.827
  87. Payne L.N. Retrovirus-induced disease in poultry. Poult. Sci., 1998, vol. 77, no. 8, pp. 1204–1212. doi: 10.1093/ps/77.8.1204
  88. Payton S. XMRV in prostate cancer. Nat. Rev. Urol., 2010, vol. 7, p. 3. doi: 10.1038/nrurol.2009.240
  89. Penin F., Dubuisson J., Rey F.A., Moradpour D., Pawlotsky J.M. Structural biology of hepatitis C virus. Hepatology, 2004, vol. 39, no. 1, pp. 5–19. doi: 10.1002/hep.20032
  90. Podschwadt P., Malyshkina A., Windmann S., Werner T., Hansen W., Bayer W. A detailed analysis of F-MuLV- and SFFV-infected cells in Friend virus-infected mice reveals the contribution of both F-MuLV- and SFFV-infected cells to the interleukin-10 host response. Retrovirology, 2022, vol. 19, no. 1: 29. doi: 10.1186/s12977-022-00613-4
  91. Pujari R., Hunte R., Thomas R., van der Weyden L., Rauch D., Ratner L., Nyborg J.K., Ramos J.C., Takai Y., Shembade N. Human T-cell leukemia virus type 1 (HTLV-1) tax requires CADM1/TSLC1 for inactivation of the NF-κB inhibitor A20 and constitutive NF-κB signaling. PLoS Pathog., 2015, vol. 11, no. 3: e1004721. doi: 10.1371/journal.ppat.1004721
  92. Reyes G.R. The nonstructural NS5A protein of hepatitis C virus: an expanding, multifunctional role in enhancing hepatitis C virus pathogenesis. J. Biomed. Sci., 2002, vol. 9, no. 3, pp. 187–197. doi: 10.1007/BF02256065
  93. Robinson M.J., Erlwein O., McClure M.O. Xenotropic murine leukaemia virus-related virus (XMRV) does not cause chronic fatigue. Trends Microbiol., 2011, vol. 19, no. 11, pp. 525–529. doi: 10.1016/j.tim.2011.08.005
  94. Rodriguez J.J., Goff S.P. Xenotropic murine leukemia virus-related virus establishes an efficient spreading infection and exhibits enhanced transcriptional activity in prostate carcinoma cells. J. Virol., 2010, vol. 84, no. 5, pp. 2556–2562. doi: 10.1128/JVI.01969-09
  95. Rogo L.D., Akogwu S., Umar U.Z., Aliyu A.M., Aminu B.M. The genetic and molecular studies of hepatitis C virus: a review. Bayero Journal of Pure and Applied Sciences, 2011, vol. 4, no. 1, pp. 72–74.
  96. Rosadas C., Taylor G.P. Mother-to-Child HTLV-1 Transmission: Unmet Research Needs. Front. Microbiol., 2019, no. 10: 999. doi: 10.3389/fmicb.2019.00999
  97. Roskoski R. Jr. Src protein-tyrosine kinase structure and regulation. Biochem. Biophys. Res. Commun., 2004, vol. 324, no. 4, pp. 1155–1164. doi: 10.1016/j.bbrc.2004.09.171
  98. Ross S.R. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses, 2010, vol. 2, no. 9, pp. 2000–2012. doi: 10.3390/v2092000
  99. Roy S., Bondada M.S., Zhang Y., Moffat K., Nair V., Yao Y. Proviral ALV-LTR Sequence Is Essential for Continued Proliferation of the ALV-Transformed B Cell Line. Int. J. Mol. Sci., 2022, vol. 23, no. 19: 11263. doi: 10.3390/ijms231911263
  100. Rubin H. The early history of tumor virology: Rous, RIF, and RAV. Proc. Natl Acad. Sci. USA, 2011, vol. 108, no. 35, pp. 14389–14396. doi: 10.1073/pnas.1108655108
  101. Salavatiha Z., Soleimani-Jelodar R., Jalilvand S. The role of endogenous retroviruses-K in human cancer. Rev. Med. Virol., 2020, vol. 30, no. 6, pp. 1–13. doi: 10.1002/rmv.2142
  102. Satou Y., Yasunaga J., Yoshida M., Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc. Natl Acad. Sci. USA, 2006, vol. 103, no. 3, pp. 720–725. doi: 10.1073/pnas.0507631103
  103. Saxena N., Kumar V. Oncogenic viruses: DUBbing their way to cancer. Virol. Discov., 2013, vol. 1: 1. doi: 10.7243/2052-6202-1-5
  104. Schlaberg R., Choe D.J., Brown K.R., Thaker H.M., Singh I.R. XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 38, pp. 16351–16356. doi: 10.1073/pnas.0906922106
  105. Sethi A.K., Celentano D.D., Gange S.J., Gallant J.E., Vlahov D., Farzadegan H. High-risk behavior and potential transmission of drug-resistant HIV among injection drug users. J. Acquir. Immune Defic. Syndr., 2004, vol. 35, no. 5, pp. 503–510. doi: 10.1097/00126334-200404150-00008
  106. Şevik M. Oncogenic viruses and mechanisms of oncogenesis. Turkish Journal of Veterinary & Animal Sciences, 2012, vol. 36, no. 4, pp. 323–329.
  107. Shi K., Pandey K.K., Bera S., Vora A.C., Grandgenett D.P., Aihara H. A possible role for the asymmetric C-terminal domain dimer of Rous sarcoma virus integrase in viral DNA binding. PLoS One, 2013, vol. 8, no. 2: e56892. doi: 10.1371/journal.pone.0056892
  108. Shiels M.S., Pfeiffer R.M., Hall H.I., Li J., Goedert J.J., Morton L.M., Hartge P., Engels E.A. Proportions of Kaposi sarcoma, selected non-Hodgkin lymphomas, and cervical cancer in the United States occurring in persons with AIDS, 1980-2007. JAMA, 2011, vol. 305, no. 14, pp. 1450–1459. doi: 10.1001/jama.2011.396
  109. Shukrun M., Jabareen A., Abou-Kandil A., Chamias R., Aboud M., Huleihel M. HTLV-1 Tax oncoprotein inhibits the estrogen-induced-ER α-Mediated BRCA1 expression by interaction with CBP/p300 cofactors. PLoS One, 2014, vol. 9, no. 2: e89390. doi: 10.1371/journal.pone.0089390
  110. Silverman R.H., Nguyen C., Weight C.J., Klein E.A. The human retrovirus XMRV in prostate cancer and chronic fatigue syndrome. Nat. Rev. Urol., 2010, vol. 7, no. 7, pp. 392–402. doi: 10.1038/nrurol.2010.77
  111. Simmons W. The role of human endogenous retroviruses (HERV-K) in the pathogenesis of human cancers. Mol. Biol., 2016, vol. 5, no. 169: 2.
  112. Sugata K., Yasunaga J., Kinosada H., Mitobe Y., Furuta R., Mahgoub M., Onishi C., Nakashima K., Ohshima K., Matsuoka M. HTLV-1 Viral Factor HBZ Induces CCR4 to Promote T-cell Migration and Proliferation. Cancer Res., 2016, vol. 76, no. 17, pp. 5068–5079. doi: 10.1158/0008-5472.CAN-16-0361
  113. Lok A.S. Hepatitis B: 50 years after the discovery of Australia antigen. J. Viral. Hepat., 2016, vol. 23, no. 1, pp. 5–14. doi: 10.1111/jvh.12444
  114. Sun J., Bodola F., Fan X., Irshad H., Soong L., Lemon S.M., Chan T.S. Hepatitis C virus core and envelope proteins do not suppress the host’s ability to clear a hepatic viral infection. J. Virol., 2001, vol. 75, no. 24, pp. 11992–11998. doi: 10.1128/JVI.75.24.11992-11998.2001
  115. Sun T., Liu Z., Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer, 2020, vol. 19, no. 1: 146. doi: 10.1186/s12943-020-01262-x
  116. Svoboda J. Cell Association in Rous Sarcoma Virus (RSV) Rescue and Cell Infection. Folia Biol. (Praha), 2015, vol. 61, no. 5, pp. 161–167.
  117. Svoboda J. Rous sarcoma virus centennial in Folia Biologica. Folia Biol. (Praha), 2013, vol. 59, no. 3, pp. 103–104.
  118. Taguchi T., Nagano-Fujii M., Akutsu M., Kadoya H., Ohgimoto S., Ishido S., Hotta H. Hepatitis C virus NS5A protein interacts with 2’,5’-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J. Gen. Virol., 2004, vol. 85, pt 4, pp. 959–969. doi: 10.1099/vir.0.19513-0
  119. Taylor G.P., Matsuoka M. Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene, 2005, vol. 24, no. 39, pp. 6047–6057. doi: 10.1038/sj.onc.1208979
  120. Telesnitsky A., Goff S.P. Reverse Transcriptase and the Generation of Retroviral DNA. In: Retroviruses. Eds: Coffin J.M., Hughes S.H., Varmus H.E. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 1997.
  121. Tidyman W.E., Rauen K.A. Pathogenetics of the RASopathies. Hum. Mol. Genet., 2016, vol. 25, no. R2, pp. R123–R132. doi: 10.1093/hmg/ddw191
  122. Toroney R., Nallagatla S.R., Boyer J.A., Cameron C.E., Bevilacqua P.C. Regulation of PKR by HCV IRES RNA: importance of domain II and NS5A. J. Mol. Biol., 2010, vol. 400, no. 3, pp. 393–412. doi: 10.1016/j.jmb.2010.04.059
  123. Urisman A., Molinaro R.J., Fischer N., Plummer S.J., Casey G., Klein E.A., Malathi K., Magi-Galluzzi C., Tubbs R.R., Ganem D., Silverman R.H., DeRisi J.L. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog., 2006, vol. 2, no. 3: e25. doi: 10.1371/journal.ppat.0020025
  124. Vidya Vijayan K.K., Karthigeyan K.P., Tripathi S.P., Hanna L.E. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front. Immunol., 2017, no. 8: 580. doi: 10.3389/fimmu.2017.00580
  125. Vogt P.K. Retroviral oncogenes: a historical primer. Nat. Rev. Cancer, 2012, vol. 12, no. 9, pp. 639–648. doi: 10.1038/nrc3320
  126. Vurusaner B., Poli G., Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic. Biol. Med., 2012, vol. 52, no. 1, pp. 7–18. doi: 10.1016/j.freeradbiomed.2011.09.035
  127. Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood, 2017, vol. 129, no. 9, pp. 1071–1081. doi: 10.1182/blood-2016-09-692574
  128. Welsh J. Modeling Breast Cancer in Animals — Considerations for Prevention and Treatment Studies. Animal Models for the Study of Human Disease. Academic Press, 2017, pp. 925–948.
  129. Withers J.B., Beemon K.L. The structure and function of the rous sarcoma virus RNA stability element. J. Cell. Biochem., 2011, vol. 112, no. 11, pp. 3085–3092. doi: 10.1002/jcb.23272
  130. Yasunaga J.I. Viral, genetic, and immune factors in the oncogenesis of adult T-cell leukemia/lymphoma. Int. J. Hematol., 2023, vol. 117, no. 4, pp. 504–511. doi: 10.1007/s12185-023-03547-5
  131. Zampino R., Pisaturo M.A., Cirillo G., Marrone A., Macera M., Rinaldi L., Stanzione M., Durante-Mangoni E., Gentile I., Sagnelli E., Signoriello G., Miraglia Del Giudice E., Adinolfi L.E., Coppola N. Hepatocellular carcinoma in chronic HBV-HCV co-infection is correlated to fibrosis and disease duration. Ann. Hepatol., 2015, vol. 14, no. 1, pp. 75–82.
  132. Zhu N., Ware C.F., Lai M.M. Hepatitis C virus core protein enhances FADD-mediated apoptosis and suppresses TRADD signaling of tumor necrosis factor receptor. Virology, 2001, vol. 283, no. 2, pp. 178–187. doi: 10.1006/viro.2001.0896
  133. Zur Hausen H. Papillomaviruses in human cancers. Proc. Assoc. Am. Physicians, 1999, vol. 111, no. 6, pp. 581–587. doi: 10.1046/j.1525-1381.1999.99723.x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1. Множественные роли DUB в вирусных и хостовых системах

Скачать (185KB)
3. Рисунок 2. Схематическое изображение основных биологических активностей, которые способствуют трансформирующей активности HTLV-1.

Скачать (92KB)
4. Рисунок 3. Хроническая вирусная инфекция и клеточный стресс. Показаны последовательные шаги от вирусной инфекции через клеточный стресс, приводящие к поражению печени и ГЦК.

Скачать (117KB)
5. Рисунок 4. Схематическое изображение основных биологических активностей, способствующих трансформирующей активности вируса гепатита С.

Скачать (100KB)

© Фазлалипур М., Моллаи Х., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».