Conserved linear B-cell peptides among the influenza A viral neuraminidases enhance the cross-protective potential of inactivated whole-virion influenza vaccine

Cover Page

Cite item

Full Text

Abstract

Introduction. Influenza is a disease caused by a widespread virus with pandemic potential. Frequently, individuals vaccinated against seasonal influenza virus are still susceptible to the disease, indicating the need to improve the immunogenic potential of existing vaccines. To assess the efficacy of influenza virus vaccines, immune response only to a single viral antigen — hemagglutinin molecule, is taken into consideration. However, according to preclinical and clinical studies, neuraminidase (NA) stimulates cross-protective immunity, which is effective against not only homologous but also drifted variants of influenza A virus. Materials and methods. In the present study, we investigated the ability of previously selected conserved linear B-cell NA epitopes (SGYSGK, SWPDGK, EECSCYPK, VELIRGRK) to enhance the immunogenicity of an inactivated whole-virion influenza vaccine based on the model strain PR8 (iPR8). BALB/c mice were injected with iPR8 in combination with one of the peptides intramuscularly three times at two-week intervals. Blood samples were collected 14 days after the last immunization, after which the mice were challenged with heterosubtypic influenza viruses H1N1pdm09 and H3N2. Results. All immunized mice showed induction of H1N1 (PR8)-specific IgG antibodies two weeks after the third immunization. The group of mice immunized with the iPR8 vaccine preparation in combination with VELIRGRK peptide showed the most pronounced induction of IgG antibodies to the H6N1 reassortant strain, the NA of which corresponds to the iPR8 virus, indicating the ability of the NA peptide to stimulate the production of NA-specific antibodies. However, the antibodies produced after immunization were not capable to inhibit the NA enzymatic activity. Despite this, mice immunized with iPR8 in combination with anti-NA peptides showed a higher survival rate after infection with heterologous virulent influenza viruses: A/California/07/09 (H1N1pdm09) and A/Philippines/2/82 (H3N2) compared to the PBS and iPR8 groups. Conclusion. Thus, the study demonstrated the immune-potentiating effect of individual peptides corresponding to conservative linear epitopes of the NA molecule in combination with a standard inactivated influenza vaccine, which made it possible to improve the protective effect of the vaccine against heterosubtypic influenza viruses.

About the authors

Tatiana S. Kotomina

Institute of Experimental Medicine

Author for correspondence.
Email: kotomina@iemspb.ru

PhD (Biology), Researcher, Laboratory of Immunology and Prophylaxis of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 12

I. A. Sychev

Institute of Experimental Medicine

Email: kotomina@iemspb.ru

Junior Researcher, Laboratory of Immunology and Prophylaxis of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 12

A. Ya. Rak

Institute of Experimental Medicine

Email: rak.ay@iemspb.ru

PhD (Biology), Senior Researcher, Laboratory of Immunology and Prophylaxis of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 12

P.-F. Wong

Institute of Experimental Medicine

Email: kotomina@iemspb.ru

PhD Student, A.A. Smorodintsev Department of Virology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 12

A. V. Bazhina

Institute of Experimental Medicine

Email: kotomina@iemspb.ru

Laboratory Assistant, Laboratory of Immunology and Prophylaxis of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 12

I. N. Isakova-Sivak

Institute of Experimental Medicine

Email: kotomina@iemspb.ru

RAS Corresponding Member, DSc (Biology), Head of the Laboratory of Immunology and Prevention of Viral Infections, A.A. Smorodintsev Department of Virology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 12

L. G. Rudenko

Institute of Experimental Medicine

Email: kotomina@iemspb.ru

DSc (Medicine), Professor, Head of A.A. Smorodintsev Department of Virology

Russian Federation, 197376, St. Petersburg, Academician Pavlov str., 12

References

  1. Сычев И.А., Копейкин П.М., Цветкова Е.В., Чередова К.В., Мильман Б.Л., Шамова О.В., Исакова-Сивак И.Н., Дешева Ю.А. Индукция перекрестно-реактивных антител у мышей, иммунизированных консервативными линейными B-клеточными эпитопами нейраминидазы вируса гриппа А // Инфекция и иммунитет. 2021. Т. 11, № 3. C. 463–472. [Sychev I.A., Kopeikin P.M., Tsvetkova E.V., Cheredova K.V., Milman B.L., Shamova O.V., Isakova-Sivak I.N., Desheva Y.A. Induction of crossreactive antibodies in mice immunized with conserved influenza A virus neuraminidase-derived linear B-cell epitopes. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 3, pp. 463–472. (In Russ.)] doi: 10.15789/2220-7619-IOC-1343
  2. Сычев И.А., Копейкин П.М., Цветкова Е.В., Шамова О.В., Дешева Ю.А., Исакова-Сивак И.Н. Перспективы использования консервативных линейных B-клеточных эпитопов нейраминидазы вируса гриппа A для индукции кросс-протективного иммунного ответа // Медицинский академический журнал. 2021. Т. 21, № 3. C. 147–151. [Sychev I.А., Kopeikin P.M., Tsvetkova E.V., Shamova O.V., Desheva Y.A., Isakova-Sivak I.N. Prospects of using conservative linear B-cell epitopes of influenza virus A neuraminidase for induction of cross-protective immune response. Meditsinskiy akademicheskiy zhurnal = Medical Academic Journal, 2021, vol. 21, no. 3, pp. 147–151. (In Russ.)] doi: 10.17816/MAJ76614
  3. Andrews S.F., Graham B.S., Mascola J.R., McDermott A.B. Is It Possible to Develop a “Universal” Influenza Virus Vaccine? Immunogenetic Considerations Underlying B-Cell Biology in the Development of a Pan-Subtype Influenza A Vaccine Targeting the Hemagglutinin Stem. Cold Spring Harb. Perspect. Biol., 2018, vol. 10, no. 7: a029413. doi: 10.1101/cshperspect.a029413
  4. Budimir N., de Haan A., Meijerhof T., Waijer S., Boon L., Gostick E., Price D.A., Wilschut J., Huckriede A. Critical role of TLR7 signaling in the priming of cross-protective cytotoxic T lymphocyte responses by a whole inactivated influenza virus vaccine. PLoS One, 2013, vol. 8, no. 5: e63163. doi: 10.1371/journal.pone.0063163
  5. Byrd-Leotis L., Cummings R.D., Steinhauer D.A. The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int. J. Mol. Sci., 2017, vol. 18, no. 7: 1541. doi: 10.3390/ijms18071541
  6. Couch R.B., Atmar R.L., Franco L.M., Quarles J.M., Wells J., Arden N., Niño D., Belmont J.W. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J. Infect. Dis., 2013, vol. 207, no. 6, pp. 974–981. doi: 10.1093/infdis/jis935
  7. Desheva Y., Smolonogina T., Donina S., Rudenko L. Study of Neuraminidase-Inhibiting Antibodies in Clinical Trials of Live Influenza Vaccines. Antibodies (Basel)., 2020, vol. 9, no. 2: 20. doi: 10.3390/antib9020020
  8. Dou D., Revol R., Östbye H., Wang H., Daniels R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front. Immunol., 2018, no. 9: 1581. doi: 10.3389/fimmu.2018.01581
  9. Fmoc solid phase peptide synthesis. A Practical Approach. Eds: W.C. Chan, P.D. White. Oxford: Oxford University Press, 2000. 346 p.
  10. Kim M.C., Lee Y.N., Ko E.J., Lee J.S., Kwon Y.M., Hwang H.S., Song J.M., Song B.M., Lee Y.J., Choi J.G., Kang H.M., Quan F.S., Compans R.W., Kang S.M. Supplementation of influenza split vaccines with conserved M2 ectodomains overcomes strain specificity and provides long-term cross protection. Mol. Ther., 2014, vol. 22, no. 7, pp. 1364–1374. doi: 10.1038/mt.2014.33
  11. Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol., 2019, vol. 19, no. 6, pp. 383–397. doi: 10.1038/s41577-019-0143-6
  12. Lee Y.T., Kim K.H., Ko E.J., Kim M.C., Lee Y.N., Hwang H.S., Lee Y., Jung Y.J., Kim Y.J., Santos J., Perez D.R., Kang S.M. Enhancing the cross protective efficacy of live attenuated influenza virus vaccine by supplemented vaccination with M2 ectodomain virus-like particles. Virology, 2019, vol. 529, pp. 111–121. doi: 10.1016/j.virol.2019.01.017
  13. Memoli M.J., Shaw P.A., Han A., Czajkowski L., Reed S., Athota R., Bristol T., Fargis S., Risos K., Powers J.H., Davey R.T.Jr., Taubenberger J.K. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. mBio, 2016, vol. 7, no. 2: e00417-16. doi: 10.1128/mBio.00417-16
  14. Monto A.S., Petrie J.G., Cross R.T., Johnson E., Liu M., Zhong W., Levine M., Katz J.M., Ohmit S.E. Antibody to Influenza Virus Neuraminidase: An Independent Correlate of Protection. J. Infect. Dis., 2015, vol. 212, no. 8, pp. 1191–1199. doi: 10.1093/infdis/jiv195
  15. Music N., Reber A.J., Kim M.C., York I.A., Kang S.M. Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets. Vaccine, 2016, vol. 34, no. 4, pp. 466–473. doi: 10.1016/j.vaccine.2015.12.023
  16. Oh J., Subbiah J., Kim K.H., Park B.R., Bhatnagar N., Garcia K.R., Liu R., Jung Y.J., Shin C.H., Seong B.L., Kang S.M. Impact of hemagglutination activity and M2e immunity on conferring protection against influenza viruses. Virology, 2022, vol. 574, pp. 37–46. doi: 10.1016/j.virol.2022.07.010
  17. Ostrowsky J., Arpey M., Moore K., Osterholm M., Friede M., Gordon J., Higgins D., Molto-Lopez J., Seals J., Bresee J. Tracking progress in universal influenza vaccine development. Curr. Opin. Virol., 2020, vol. 40, pp. 28–36. doi: 10.1016/j.coviro.2020.02.003
  18. Rudenko L., Isakova-Sivak I., Naykhin A., Kiseleva I., Stukova M., Erofeeva M., Korenkov D., Matyushenko V., Sparrow E., Kieny M.P. H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect. Dis., 2016, vol. 16, no. 3, pp. 303–310. doi: 10.1016/S1473-3099(15)00378-3
  19. Song B.M., Kang H.M., Lee E.K., Jung S.C., Kim M.C., Lee Y.N., Kang S.M., Lee Y.J. Supplemented vaccination with tandem repeat M2e virus-like particles enhances protection against homologous and heterologous HPAI H5 viruses in chickens. Vaccine, 2016, vol. 34, no. 5, pp. 678–686. doi: 10.1016/j.vaccine.2015.11.074

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Study designs and timelines for experiment in BALB/c mice

Download (358KB)
3. Figure 2. Dynamics of body weight loss and survival rate of nonimmunized BALB/c mice (PBS) and BALB/c mice immunized with inactivated iPR8 vaccine individually or in combination with one of the B-cell neuraminidase peptides: SGYSGK (Vir-4), SWPDGK (Vir-5), EECSCYPK (Vir-6) and VELIRGRK (Vir-7). Animals were monitored for 14 days after challenge with mouse-adapted virulent influenza virus strain A/California/7/09 mouse-adapted (H1N1pdm09) (A) and A/Philippines/2/82 X-79 (H3N2) (B)

Download (904KB)
4. Figure 3. Analysis of serum IgG antibody levels of BALB/c mice after triple immunization

Download (868KB)

Copyright (c) 2024 Kotomina T.S., Sychev I.A., Rak A.Y., Wong P., Bazhina A.V., Isakova-Sivak I.N., Rudenko L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».