Long non-coding RNAs — regulators of rubella virus infection and antiviral response

Cover Page

Cite item

Full Text

Abstract

Introduction. Rubella virus is an RNA-containing virus capable of infecting human cells and causing infectious disease. Infection of pregnant women with rubella virus can lead to abortion or congenital rubella syndrome (CRS), a set of long-term birth defects including incomplete fetal organ development and mental retardation. There is no specific treatment for rubella and CRS. The regulation of antiviral immune response and viral reproduction by long non-coding RNAs is currently under active investigation. In this study, we evaluated the changes in the expression profile of long non-coding RNAs in rubella virus-infected A549 epithelial by RNA sequencing. Materials and Methods. A549 cells were infected with a wild-type variant of laboratory strain C-77 of rubella virus with a multiplicity of infection of 1.0 infectious units per cell and incubated for 72 hours. Virus titres were determined by the CCID method in the sensitive RK-13 cell culture. 48 h after infection, the cell monolayer was lysed, RNA was isolated, and libraries were prepared for sequencing. Sequencing was performed on the NextSeq500 platform (Illumina, USA) in paired-end reading mode. Validation of the obtained RNA sequencing data was performed using quantitative real-time PCR. Results. Rubella virus replication affects the production of some long non-coding RNAs by altering their expression profile. Thus, upon infection of A549 epithelial cells with rubella virus, there was a significant increase in the expression of such long non-coding RNAs as GAS5, NEAT1, LUCAT1, MIR210HG, MEG3, EPB41L4A-AS1, ZFAS1, and SNHG 1, 7, 12, 29, 32. DANCR, IGFL2-AS1, IGFL2-AS1, MIR1915HG, and SNHG14 were most significantly decreased in expression. Gene ontology (GO)-analysis revealed that long non-coding RNAs are involved at different levels in the mechanisms of immune response, in particular, RNA processing and nucleic acid metabolism; therefore, up- and down-regulation of these molecules leads to modulation of human antiviral immune response in response to rubella virus infection. Conclusion. Thus, the regulation of long non-coding RNA production by rubella virus has been shown for the first time. Differentially expressed long non-coding RNAs can be used as prognostic and diagnostic biomarkers of viral diseases.

About the authors

M. K. Gulimov

I. Mechnikov Research Institute of Vaccines and Sera

Author for correspondence.
Email: yulia.ammour@yahoo.fr

PhD Student

Russian Federation, 115088, Moscow, 1st Dubrovskaya str., 15

N. O. Kalyuzhnaya

I. Mechnikov Research Institute of Vaccines and Sera

Email: yulia.ammour@yahoo.fr

PhD Student

Russian Federation, 115088, Moscow, 1st Dubrovskaya str., 15

Yulia I. Ammour

I. Mechnikov Research Institute of Vaccines and Sera

Email: yulia.ammour@yahoo.fr

PhD (Biology), Head of the Laboratory of Experimental Immunology

Russian Federation, 115088, Moscow, 1st Dubrovskaya str., 15

V. V. Zverev

I. Mechnikov Research Institute of Vaccines and Sera

Email: yulia.ammour@yahoo.fr

RAS Full Member, DSc (Biology), Professor, Scientific Director

Russian Federation, 115088, Moscow, 1st Dubrovskaya str., 15

O. A. Svitich

I. Mechnikov Research Institute of Vaccines and Sera

Email: yulia.ammour@yahoo.fr

DSc (Medicine), Professor of RAS, RAS Corresponding Member, Director

Russian Federation, 115088, Moscow, 1st Dubrovskaya str., 15

References

  1. Agarwal S., Vierbuchen T., Ghosh S., Chan J., Jiang Z., Kandasamy R.K., Ricci E., Fitzgerald K.A. The long non-coding RNA LUCAT1 is a negative feedback regulator of interferon responses in humans. Nat. Commun., 2020, vol. 11, no. 1: 6348. doi: 10.1038/s41467-020-20165-5
  2. Chen L., Chen L., Zuo L., Gao Z., Shi Y., Yuan P., Han S., Yin J., Peng B., He X., Liu W. Short Communication: Long Noncoding RNA GAS5 Inhibits HIV-1 Replication Through Interaction with miR-873. AIDS Res. Hum. Retroviruses, 2018, vol. 34, no. 6, pp. 544–549. doi: 10.10⁸9/AID.2017.0177
  3. Das P.K., Kielian M. Molecular and Structural Insights into the Life Cycle of Rubella Virus. J. Virol., 2021, vol. 95, no. 10: e02349-20. doi: 10.1128/JVI.02349-20
  4. Jia X., Zhang M., Wang H., Cheng C., Li Q., Li Y., Kong L., Lan X., Wang Y., Liang X., Yuan S., Wang Y., Xu A. ZNFX1 antisense RNA1 promotes antiviral innate immune responses via modulating ZNFX1 function. J. Med. Virol., 2023, vol. 95, no. 3: e28637. doi: 10.1002/jmv.28637
  5. Laha S., Saha C., Dutta S., Basu M., Chatterjee R., Ghosh S., Bhattacharyya N.P. In silico analysis of altered expression of long non-coding RNA in SARS-CoV-2 infected cells and their possible regulation by STAT1, STAT3 and interferon regulatory factors. Heliyon, 2021, vol. 7, no. 3: e06395. doi: 10.1016/j.heliyon.2021.e06395
  6. Ma H., Han P., Ye W., Chen H., Zheng X., Cheng L., Zhang L., Yu L., Wu X., Xu Z., Lei Y., Zhang F. The Long Noncoding RNA NEAT1 Exerts Antihantaviral Effects by Acting as Positive Feedback for RIG-I Signaling. J. Virol., 2017, vol. 91, no. 9: e02250-16. doi: 10.1128/JVI.02250-16
  7. Mahmoud R.H., Hefzy E.M., Shaker O.G., Ahmed T.I., Abdelghaffar N.K., Hassan E.A., Ibrahim A.A., Ali D.Y., Mohamed M.M., Abdelaleem O.O. GAS5 rs2067079 and miR-137 rs1625579 functional SNPs and risk of chronic hepatitis B virus infection among Egyptian patients. Sci. Rep., 2021, vol. 11, no. 1: 20014. doi: 10.1038/s41598-021-99345-2
  8. Meydan C., Madrer N., Soreq H. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Front. Immunol., 2020, no. 11: 590870. doi: 10.3389/fimmu.2020.590870
  9. Nguyen L.N.T., Nguyen L.N., Zhao J., Schank M., Dang X., Cao D., Khanal S., Chand Thakuri B.K., Lu Z., Zhang J., Li Z., Morrison Z.D., Wu X.Y., El Gazzar M., Ning S., Wang L., Moorman J.P., Yao Z.Q. Long Non-coding RNA GAS5 Regulates T Cell Functions via miR21-Mediated Signaling in People Living With HIV. Front. Immunol., 2021, no. 12: 601298. doi: 10.3389/fimmu.2021.601298
  10. Qiu L., Wang T., Tang Q., Li G., Wu P., Chen K. Long Non-coding RNAs: Regulators of Viral Infection and the Interferon Antiviral Response. Front. Microbiol., 2018, no. 9: 1621. doi: 10.3389/fmicb.2018.01621
  11. Saini J., Thapa U., Bandyopadhyay B., Vrati S., Banerjee A. Knockdown of NEAT1 restricts dengue virus replication by augmenting interferon alpha-inducible protein 27 via the RIG-I pathway. J. Gen. Virol., 2023, vol. 10⁴, no. 1. doi: 10.1099/jgv.0.001823
  12. Talotta R., Bahrami S., Laska M.J. Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health? Biochim. Biophys. Acta Mol. Basis Dis., 2022, vol. 1868, no. 2: 166291. doi: 10.1016/j.bbadis.2021.166291
  13. Tao X.W., Zeng L.K., Wang H.Z., Liu H.C. LncRNA MEG3 ameliorates respiratory syncytial virus infection by suppressing TLR4 signaling. Mol. Med. Rep., 2018, vol. 17, no. 3, pp. 4138–4144. doi: 10.3892/mmr.2017.8303
  14. Vierbuchen T., Agarwal S., Johnson J.L., Galia L., Lei X., Stein K., Olagnier D., Gaede K.I., Herzmann C., Holm C.K., Heine H., Pai A., O’Hara Hall A., Hoebe K., Fitzgerald K.A. The lncRNA LUCAT1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proc. Natl Acad. Sci. USA, 2023, vol. 120, no. 1: e2213715120. doi: 10.1073/pnas.2213715120
  15. Wang P. The Opening of Pandora’s Box: An Emerging Role of Long Noncoding RNA in Viral Infections. Front. Immunol., 2019, no. 9: 3138. doi: 10.3389/fimmu.2018.03138

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Rubella virus accumulation in supernatants

Download (194KB)
3. Figure 2. Expression of the most significant dnRNAs (IncRNAs) in rubella virus-infected cells (FDR < 0.005)

Download (1MB)

Copyright (c) 2024 Gulimov M.K., Kalyuzhnaya N.O., Ammour Y.I., Zverev V.V., Svitich O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».