Relationship between the outcomes of intensive phase therapy in patients with newly diagnosed infiltrative pulmonary tuberculosis and activity of purine metabolism enzymes as well as CD3+CD8+ lymphocyte level
- Authors: Dyakova M.Y.1, Serebryanaya N.B.2,3, Esmedlyaeva D.S.1, Yablonskiy P.K.1,4
-
Affiliations:
- St. Petersburg State Research Institute of Phthisiopulmonology
- Institute of Experimental Medicine
- I. Mechnikov North-Western State Medical University
- St. Petersburg University
- Issue: Vol 14, No 1 (2024)
- Pages: 77-85
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/256768
- DOI: https://doi.org/10.15789/2220-7619-RBT-17607
- ID: 256768
Cite item
Full Text
Abstract
Monitoring activity of inflammatory process and lymphocyte subsets can help assess the effectiveness of intensive phase therapy (IPT) already in the early stages of treatment. The goal is to evaluate changes in the concentration and activity of enzymes associated with purine metabolism and peripheral blood lymphocyte subset composition, and to determine their relationship with IPT effectiveness in patients with newly diagnosed infiltrative pulmonary tuberculosis (IPTb).
Materials and methods. In 141 IPTb patients, the IPT data were presented as follows: “significant improvement” (SI) — disappearance of intoxication symptoms, abacillation, closure of decay cavities; “less pronounced improvement” (LMI) — eliminated symptoms of intoxication, abacillation, pronounced resorption of focal and infiltrative changes, reduction of decay cavities. We assessed the activity of adenosine deaminase in blood serum (eADA-1, 2), mononuclear cells and neutrophils, the concentration of blood serum ecto-5'-nucleotidase (eHT5E), CD26 (DPPV) in blood serum (s, soluble form) and mononuclear cells (m, membrane form), subpopulation composition.
Results. Patients exhibit increased concentrations of eNT5E, mCD26 (DPPIV) and eADA-2 activity, and decreased intracellular ADA-1 activity. In the “LMI” group, after IPT, an increased sCD26 (DPPV) level was noted. The groups differed in lymphocyte counts and percentage of CD3+CD8+ cells. eADA-2 activity was higher in the LMI group and increased after IPT, in contrast to comparison group. mCD26 (DPPIV) concentrations are higher in PD patients before therapy and after IPT.
Conclusion. Thus, the outcome of IPT in IPTb patients is associated with altered T-lymphocyte populations and severity of the inflammatory process. Studying the activity of membrane and soluble eADA-2, CD26 (DPPIV) and percentage of CD3+CD8+ T-lymphocytes in the early stages of therapy can provide the necessary information for correcting personalized pathogenetic therapy of patients with newly diagnosed IPTb.
Full Text
##article.viewOnOriginalSite##About the authors
M. Ye. Dyakova
St. Petersburg State Research Institute of Phthisiopulmonology
Author for correspondence.
Email: marinadyakova@yandex.ru
DSc (Biology), Senior Researcher, Department of Fundamental Medicine
Russian Federation, St. PetersburgN. B. Serebryanaya
Institute of Experimental Medicine; I. Mechnikov North-Western State Medical University
Email: marinadyakova@yandex.ru
DSc (Medicine), Professor, Head of the Laboratory of General Immunology, Department of General Pathology and Pathophysiology, Professor of the Department of Clinical Mycology, Allergology and Immunology
Russian Federation, St. Petersburg; St. PetersburgD. S. Esmedlyaeva
St. Petersburg State Research Institute of Phthisiopulmonology
Email: marinadyakova@yandex.ru
PhD (Biology), Senior Researcher, Department of Fundamental Medicine
Russian Federation, St. PetersburgP. K. Yablonskiy
St. Petersburg State Research Institute of Phthisiopulmonology; St. Petersburg University
Email: marinadyakova@yandex.ru
DSc (Medicine), Professor, Director, Vice-Rector for Medical Activities
Russian Federation, St. Petersburg; St. PetersburgReferences
- Багишева Н.В., Мордык А.В., Гольтяпин В.В. Прогнозирование результатов лечения туберкулеза у пациентов с хронической обструктивной болезнью легких // Медицинский Альянс. 2019. Т. 7, № 1. С. 13–19. [Bagisheva N., Mordyk A., Goltyapin V. Prediction of the results of tuberculosis treatment in patients with chronic obstructive lung disease. Meditsinskii Al’yans = Medical Alliance, 2019, vol. 7, no. 1, pp. 13–19. (In Russ.)]
- Багишева Н.В., Мордык А.В., Гольтяпин В.В., Моисеева М.В., Батищева Т.Л., Ситникова С.В., Ширинская Н.В. Варианты прогноза эффективности терапии туберкулеза: в фокусе пациенты с хронической обструктивной болезнью легких // Медицинский Альянс. 2023. Т. 11, № 1. С. 19–25. [Bagisheva N., Mordyk A., Goltyapin V., Moiseeva M., Batishcheva T., Sitnikova S., Shirinskaya N. Options in predicting the effectiveness of tuberculosis therapy: focus on patients with chronic obstructive pulmonary disease. Meditsinskii Al’yans = Medical Alliance, 2023, vol. 11, no. 1, pp. 19–25. (In Russ.)] doi: 10.36422/23076348-2023-11-1-19-25
- Иванова Е.А., Золотов Н.Н., Позднев В.Ф., Воронина Т.А. Активность дипептидилпептидазы IV при экссудативном воспалении у грызунов // Патогенез. 2018. Т. 16, № 1. С. 51–57. [Ivanova E., Zolotov N., Pozdnev V., Voronina, T. Alteration of dipeptidyl peptidase IV activity in rodents with exudative in flammation. Patogenez = Pathogenesis, 2018, vol. 16, no. 1, pp. 51–57. (In Russ.)] doi: 10.25557/2310-0435.2018.01.51-57
- Кетлинский С.А. Генетический анализ чувствительности организма к туберкулезной инфекции // Вестник Российской академии медицинских наук. 2001. № 1. С. 11–24. [Ketlinsky S.A. Genetic analysis of the body’s sensitivity to tuberculosis infection. Vestnik Rossiiskoi akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences, 2001, no. 1, pp. 11–24. (In Russ.)]
- Кноринг Б.Е., Давыдова Н.И., Басек Т.Ф., Ница Н.А., Елькин А.В. Показатели иммунитета у больных прогрессирующим фиброзно-кавернозным туберкулезом в зависимости от выраженности деструктивных изменений в легких // Медицинская иммунология. 2012. Т. 14, № 4–5. С. 329–336. [Knoring B.E., Davydova N.A., Basek T.S., Nica N.A., Elkin A.V. Immune indexes in patients with progressive fibrous-cavernous tuberculosis dependent on severity of destructive changes in the lungs. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, vol. 14, no. 4–5, pp. 329–336. (In Russ.)] doi: 10.15789/1563-0625-2012-4-5-329-336
- Andersson J., Samarina A., Fink J., Rahman S., Grundstrӧm S. Impaired expression of perforin and granulysin in CD8_ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect. Immun., 2007, vol. 75, no. 11, pp. 5210–5222. doi: 10.1128/IAI.00624-07
- Antonioli L., Csóka B., Fornai M., Colucci R., Kókai E., Blandizzi C., Haskó G. Adenosine and inflammation: what’s new on the horizon? Drug Discov. Today, 2014, vol. 19, no. 8, pp. 1051–1068. doi: 10.1016/j.drudis.2014.02.010
- Busso N., Wagtmann N., Herling C., Chobaz-Péclat V., Bischof-Delaloye A., So A., Grouzmann E. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am. J. Pathol., 2005, vol. 166, no. 2, pp. 433–442. doi: 10.1016/S0002-9440(10)62266-3
- Ciferská H., Horák P., Heřmanová Z., Ordeltová M., Zadražil J., Tichý T., Ščudla V. The levels of sCD30 and of sCD40L in a group of patients with systemic lupus erythematodes and their diagnostic value. Clin. Rheumatol., 2007, vol. 26, no. 5, pp. 723–728. doi: 10.1007/s10067-006-0389-9
- Cortés A., Gracia E., Moreno E., Mallol J., Lluís C., Canela E.I., Casadó V. Moonlighting adenosine deaminase: a target protein for drug development. Med. Res. Rev., 2015, vol. 35, no. 1, pp. 85–125. doi: 10.1002/med.21324
- Dhanwani R., Takahashi M., Mathews I.T., Lenzi C., Romanov A., Jeramie D. Watrous J.D., Pieters B., Hedrick C.C., Benedict C.A., Linden J., Nilsson R., Jain M., Sharma S. Cellular sensing of extracellular purine nucleosides triggers an innate IFN-β response. Sci. Adv., 2020, vol. 6, no. 30: eaba3688. doi: 10.1126/sciadv.aba3688
- Eltzschig H.K., Thompson L.F., Karhausen J., Cotta R.J., Ibla J.C., Robson S.C., Colgan S.P. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood, 2004, vol. 104, no. 13, pp. 3986–3992. doi: 10.1182/blood-2004-06-2066
- Gao R., Sun W., Chen Y., Su Y., Wang C., Dong L. Elevated serum levels of soluble CD30 in ankylosing spondylitis patients and its association with disease severity-related parameters. Biomed Res. Int., 2015, vol. 2015, pp. 617282–617288. doi: 10.1155/2015/617282
- Ginés S., Mariño M., Mallol J., Canela E.I., Morimoto C., Callebaut C., Hovanessian A., Lluis C., Franco R. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction. Biochem J., 2002, vol. 361, pp. 203–209. doi: 10.1042/0264-6021:3610203.
- Gorrell M.D., Gysbers V., McCaughan G.W. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand. J. Immunol., 2001, vol. 54, pp. 249–264.
- Hashikawa T., Takedachi M., Terakura M., Yamada S., Thompson L.F., Shimabukuro Y., Murakami S. Activation of adenosine receptor on gingival fibroblasts. J. Dent Res., 2006, vol. 85, no. 8, pp. 739–744. doi: 10.1177/154405910608500810
- Hasko G., Cronstein B.N. Adenosine: an endogenous regulator of innate immunity. Trends Immunol., 2004, vol. 25, no. 1, pp. 33–39. doi: 10.1016/j.it.2003.11.003
- Henderson J.M., Xiang M.S.W., Huang J.C., Wetzel S., Jiang L., Lai J.H., Wu W., Kench J.G., Bachovchin W.W., Roediger B., McCaughan G.W., Zhang H.E., Gorrell M.D. Dipeptidyl peptidase inhibition enhances CD8 T cell recruitment and activates intrahepatic inflammasome in a murine model of hepatocellular carcinoma. Cancers, 2021, vol. 13: 5495. doi: 10.3390/cancers13215495
- Hildebrandt M., Rose M., Ruter J., Salama A., Monnikes H., Klapp B.F. Dipeptidyl peptidase IV (DP IV, CD26) in patients with inflammatory bowel disease. Scand. J. Gastroenterol., 2001, vol. 36, no. 10, pp. 1067–1072. doi: 10.1080/003655201750422675
- Kaljas Y., Liu C., Skaldin M., Wu C., Zhou Q., Lu Y., Aksentijevich I., Zavialov A. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell. Mol. Life Sci., 2017, vol. 74, no. 3, pp. 555–570. doi: 10.1007/s00018-016-2357-0
- Kobayashi H., Hosono O., Mimori T., Kawasaki H., Dang N.H., Tanaka H., Morimoto C. Reduction of serum soluble CD26/dipeptidyl peptidase IV enzyme activity and its correlation with disease activity in systemic lupus erythematosus. J. Rheumatol., 2002, vol. 29, no. 9, pp. 1858–1866.
- Lee D.S., Lee E.S., Alam M.M., Jang J.H., Lee H.S., Oh H., Kim Y.-C., Manzoor Z., Koh Y.-S., Kang D.-G., Lee D.H. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism, 2016, vol. 65, no. 2, pp. 89–101. doi: 10.1016/j.metabol.2015.10.002
- Liang D., Shao H., Born W.K., O’Brien R.L., Kaplan H.J., Sun D. High level expression of A2ARs is required for the enhancing function, but not for the inhibiting function, of γδ T cells in the autoimmune responses of EAU. PLoS One, 2018, vol. 13, no. 6: e0199601. doi: 10.1371/journal. pone.0199601
- Lyadova I.V., Panteleev A.V. Th1 and Th17 cells in tuberculosis: protection, pathology, and biomarkers. Mediators Inflamm., 2015, vol. 2015, no. 10: 854507. doi: 10.1155/2015/854507
- Martinez-Navio J.M., Casanova V., Pacheco R., Naval-Macabuhay I., Climent N., Garcia F., Gatell J.M., Mallol J., Gallart T., Lluis C., Franco R.J. Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. J. Leukoc. Biol., 2011, vol. 89, no. 1, pp. 127–136. doi: 10.1189/jlb.1009696
- Ohta A., Sitkovsky M. Extracellular adenosine-mediated modulation of regulatoty T cells. Front. Immunol., 2014, vol. 5, pp. 304–313. doi: 10.3389/fimmu.2014.00304
- Pan K., Ohnuma K., Morimoto C., Dang N.H. CD26/dipeptidyl peptidase IV and its multiple biological functions. Cureus, 2021, vol. 13, no. 2: e13495. doi: 10.7759/cureus.13495
- Pasquini S., Contri C., Borea P.A., Vincenzi F., Varani K. Adenosine and inflammation: here, there and everywhere. Int. J. Mol. Sci., 2021, vol. 22: 7685. doi: 10.3390/ijms22147685
- Schonermarck U., Csernok E., Trabandt A., Hansen H., Gross W.L. Circulating cytokines and soluble CD23, CD26 and CD30 in ANCA-associated vasculitides. Clin. Exp. Rheumatol., 2000, vol. 18, no. 4, pp. 457–463.
- Thompson L.F., Eltzschig H.K., Ibla J.C., Van De Wiele C.J., Resta R., Morote-Garcia J.C., Colgan S.P. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med., 2004, vol. 200, no. 11, pp. 1395–1405. doi: 10.1084/jem.20040915
- Tiwari-Heckler S., Yee E.U., Yalcin Y., Yalcin Y., Park J., Nguyen D.-H.T., Gao W., Csizmadia E., Afdhal N., Mukamal K.J., Robson S.C., Lai M., Schwartz R.E., Jiang Z.C. Adenosine deaminase 2 produced by infiltrative monocytes promotes liver fibrosis in nonalcoholic fatty liver disease. Cell. Rep., 2021, vol. 37, no. 4: 109897. doi: 10.1016/j.celrep.2021.109897
- Ulusoy H., Kamanli A., Ilhan N., Kuru O., Arslan S., Alkan G., Ozgocmen S.. Serum levels of soluble CD26 and CD30 and their clinical significance in patients with rheumatoid arthritis. Rheumatol. Int., 2012, vol. 32, no. 12, pp. 3857–3862. doi: 10.1007/s00296-011-2302-3
- Wronkowitz N., Görgens S.W., Romacho T., Villalobos L.A., Sánchez-Ferrer C.F., Peiró C., Sell H., Eckel J. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim. Biophys. Acta, 2014, vol. 1842, no. 9, pp. 1613–1621. doi: 10.1016/j.bbadis.2014.06.004
- Zavialov A.V., Gracia E., Glaichenhaus N., Franco R., Zavialov A.V., Lauvau G. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J. Leuk. Biol., 2010, vol. 88, no. 2, pp. 279–290. doi: 10.1189/jlb.1109764
- Zhan M., Xue H., Wang Y., Wu Z., Wen Q., Shi X., Wang J. A clinical indicator-based prognostic model predicting treatment outcomes of pulmonary tuberculosis: a prospective cohort study. BMC Infect. Dis., 2023, vol. 23, no. 1: 101. doi: 10.1186/s12879-023-08053-x
Supplementary files
